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adds to the monitoring and understanding of ecological 
functioning within the area [1]. AGB is one among the 
essential climatic variables as well as a potential essen-
tial biodiversity variable for understanding the ecosystem 
structure and function [2]. Vegetation and biomass are the 
significant factors affecting not only biodiversity and envi-
ronmental processes, but also ecosystem variability and 
perseverance, which indicates the need for monitoring and 
maintaining community biomass [3]. In addition, biomass 
measurement encourages identifying and monitoring the 
areas at risk of degradation and desertification, particularly 
in the semi-arid and arid regions, for sustainable manage-
ment of land use [4].

Destructive sampling techniques used in traditional bio-
mass assessment methodologies are not feasible, as they are 
expensive and time consuming, particularly in vast areas [5, 
6]. The use of remote sensing technology made possible a 
cost-effective method for spatially explicit monitoring of 

1 Introduction

Trees outside forests play a crucial role in sustainable natu-
ral resource management by providing a variety of goods, 
including timber, fruits, fodder, and offering essential eco-
system services like water, carbon, and biodiversity. Bio-
mass serves as a responsive indicator of changes in the 
environment and the operational dynamics of ecosystems. 
Quantifying the biomass of vegetation at the regional scale 
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Abstract
Trees outside forests are vital for sustainable resource management and play a crucial role in the sequestration of carbon. 
This study attempted to estimate the above ground biomass (AGB) of trees outside forests utilizing the datasets of ALOS 
PALSAR-2 (L-band) and Sentinel-1 (C-band), with a focus on a semi-arid region in Sri Sathya Sai district of Andhra 
Pradesh, India. Here, we employed random forest (RF) algorithm integrating AGB observed over a large-scale ecological 
plot and remote sensing technology for generating 3 models (Model-1 (M1), Model-2 (M2), and Model-3 (M3)). Backscat-
tering coefficients (VV and VH) and H-α dual pol decomposition parameter, anisotropy (A) from Sentinel-1 were applied 
for M1, and the backscattering coefficients (HV and HH) and the band ratio (HV/HH) from ALOS PALSAR-2 data were 
utilized in M2. M3 is the ensemble of parameters from both sensors. Validating the three models found that the R2 values 
fall between 0.44 and 0.64, the RMSE between 1.89 t/ha and 2.49 t/ha, and the MAE between 1.56 t/ha and 1.99 t/ha. 
The results of the study suggest that both Sentinel-1 and ALOS PALSAR-2 data can be employed for AGB estimation 
in semi-arid regions incorporating machine learning algorithms like RF. The results of the study are crucial for sustain-
able land management and reducing uncertainty using data from large-area ecological plot and multi-frequency synthetic 
aperture radar (SAR).
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vegetation biomass and disturbances [3, 7]. Studies on AGB 
estimation have been conducted with data obtained from dif-
ferent sensors, including optical, microwave, LiDAR, and 
hyperspectral remote sensing. By taking into consideration 
the optical data, the major drawback in AGB estimation is 
that it gets saturated due to the less sensitivity to biomass, 
especially in high biomass regions [5, 8–10]. The high cost 
of acquisition and non-availability of space-borne LiDAR 
data obstacles to LiDAR based AGB estimation.

The advantage of SAR data is that it can operate in all 
weather, day and night [8] and it can penetrate clouds and 
tree canopy, and exhibit a volume scattering mechanism 
[11, 12]. The different wavelengths (X, C, S, L, P), polar-
izations (HH, VV, HV, VH) and incident angles in SAR 
data influence the backscattering coefficient, which in turn 
shows varied sensitivity to AGB. The frequency of the SAR 
signal determines the length of penetration into the vegeta-
tion canopy at specific incident angles [11–13]. Due to the 
higher penetration potential and sensitivity to tree trunk of 
L-band data, it is being extensively investigated to increase 
the accuracy of AGB estimate [8, 14–20]. The Japan Aero-
space Exploration Agency (JAXA) made ALOS PALSAR-2 
ScanSAR data with a spatial resolution of 25 m freely 
accessible, and it is among the most extensively utilized 
sensors for estimation of biomass globally. Vegetation bio-
physical parameters are more effectively retrieved by utiliz-
ing longer wavelengths along with cross-polarized (VH or 
HV) data, as opposed to shorter wavelengths combined with 
co-polarized (VV and HH) data. This superiority is attrib-
uted to the depolarization of the incoming signal that occurs 
due to multiple scatterings within the vegetation volume 
[13]. Otukei and Emanuel, 2015 used backscattering coef-
ficients for HV and HH polarizations of ALOS PALSAR 
to estimate the AGB of Bwindi Impenetrable National Park 
(BINP) in the south-western part of Uganda [8]. A model 
based on bagging stochastic gradient boosting (BagSGB) 
was employed by Carreiras et al., 2013 for the estimation 
of AGB in Miombo savanna woodlands of Mozambique in 
East Africa with the backscatter intensity from ALOS PAL-
SAR data, obtaining a correlation coefficient of 0.95 [15]. 
Chang et al., 2022, in their study, found the significance of 
ALOS PALSAR L-band data in mapping the tundra shrub 
leaf area index and biomass as well [21].

Though the C-band cannot penetrate deep into the can-
opy [6, 22], it can penetrate through foliage and get sub-
sequently scattered by the trunk and primary branches of 
trees [10]. The potential of the C-band in estimating bio-
mass has been proven by various investigators, singularly 
or in combination [6, 10, 23–25]. Sentinel-1 in combina-
tion with Worldview-3 was used for the vegetation mine 
rehabilitation area by Bao et al., 2019, yielding an accuracy 
of R2 = 0.79 [24]. Roy et al., 2021, predicted the biomass 

and tree density of Shorea robusta dominated forest cover 
using Sentinel-1 backscattering coefficients and Sentinel-2 
derived EVI with a R2 of 0.45 and 0.87 for biomass and tree 
density estimation, respectively [10]. Sentinel-1 coherence 
was utilized for AGB estimation by Cartus et al., 2022, in a 
semi-arid forest in California [25].

In addition, the incorporation of polarimetric decompo-
sition parameters from Sentinel-1 data was found to have 
sensitivity towards the vegetation biophysical characteris-
tics as well. The polarimetric decomposition technique was 
originally developed for quad-polarized data and later mod-
ified for dual-polarized data like those from Sentinel-1 [26]. 
In crop monitoring, Dave et al., 2023 found an increase 
in R2 values through the incorporation of decomposition 
parameters [26]. De Petris et al., 2021 found the feasibil-
ity of decomposition parameters from Sentinel-1 in map-
ping the damaged apple orchards in Italy [27]. Furthermore, 
the alpha angle and entropy generated from Sentinel-1 dual 
polarimetric decomposition were utilized by Jesus et al., 
2023 for the estimation of the AGB of arboreal Caatinga 
[28]. However, the polarimetric decomposition of Senti-
nel-1 dual-polarized data is rarely employed in the context 
of estimating vegetation biomass.

Over the above, several investigators have illustrated 
the utility of integrating different SAR bands in retrieving 
vegetation biophysical parameters [29, 30]. For instance, 
Velasco Pereira et al., 2023 investigated the changes in bio-
mass in Mediterranean pine forests through random forest 
and yielded a highest performance from the fusion of Senti-
nel-1, ALOS PALSAR-2, and Landsat 8 data [22]. An inte-
gration of L-band ALOS PALSAR, C-band RADARSAT-2, 
and X-band TerraSAR-X, datasets gave improved results 
for quantifying AGB (R2 = 0.83), canopy cover (R2 = 0.83) 
and total canopy volume (R2 = 0.85) in the African savannas 
by Naidoo et al., 2015 [31]. The machine learning regres-
sion approach has gained popularity in AGB estimation 
over the past several years, even though no single technique 
has shown to be the best for predicting AGB in selected geo-
graphic region [32, 33]. Owing to the relative ease of tuning 
and the robustness found in previous studies in prediction of 
AGB [6, 34–37], random forest algorithm was selected for 
the present study.

Numerous studies have considered the potential of radar 
data in AGB estimation, showing excellent agreement with 
the vegetation biophysical parameters. Most of the studies 
are focused on forest ecosystems. Less attention is given 
to the biomass contributed by the arid and semi-arid eco-
systems to the total terrestrial ecosystem. However, only a 
limited number of studies have been done at the local level 
for the trees outside the forest with the actual biomass of the 
selected region so far. Due to the heterogeneous distribu-
tion and variation in vegetation density, AGB estimation in 
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a semi-arid zone is challenging. In the present study, we uti-
lized multi-frequency data from Sentinel-1 and ALOS PAL-
SAR-2 sensors for quantifying AGB in a semi-arid region 
of India. The quantitative assessment of vegetation biomass 
in semi-arid regions is a key source for assisting sustainable 
land management of the area and will help to identify the 
most vulnerable regions to the changing climate scenario.

The primary objectives of the study were to estimate the 
vegetation AGB in a semi-arid environment utilizing the 
random forest algorithm, and to evaluate the potential of 
Sentinel-1 and ALOS PALSAR-2 SAR sensors operating at 
C and L-bands, respectively.

2 Methodology

2.1 Study area

We selected a 2587 km2 area in the semi-arid region of 
the Sri Sathya Sai district of Andhra Pradesh for the pres-
ent study, which is coming under the “Deccan Plateau” 
phytogeographic zone in southern India. A variety of hab-
itat types occupy this region, including scrublands, grass-
lands, orchards, long fallow, stony lands, built-up areas, 
seasonal streams, and remnants of dry deciduous and dry 
evergreen scrub vegetation as well. The region experiences 
hot, dry weather for most of the year, with a yearly aver-
age temperature of around 25.8 °C. The annual precipitation 
received is 620 mm, with September experiencing the peak 
at 161.2 mm [38]. The area had patches of trees and scat-
tered individual trees as well. The major tree species found 
in the region are Tamarindus indica L., Mangifera indica L., 
Ficus religiosa L., Pongamia pinnata (L.) Pierre, Grevillea 

robusta A.Cunn. ex R.Br., Azadirachta indica A.Juss., and 
Wrightia tinctoria (Roxb.) R.Br. There are two palm species 
commonly found in the study area are Cocos nucifera L. 
(cultivated) and Phoenix sylvestris (L.) Roxb. (wild). Dense 
patches of the invasive woody species - Prosopis juliflora 
(Sw.) Raf. were also present [38]. Fig. 1 shows the study 
area selected for the current study. Vegetation types present 
in the study area are shown in Figs. 2, 3 and 4.

2.2 Field AGB calculation

The study has used a field inventory dataset of 900 ha large 
area plot, which was chosen to represent the geographical 
variation of this semi-arid region [38]. The sampled area 
covers 0.35% of the regional landscape. The percentage area 

Fig. 2 Pongamia-Wrightia-Azadirachta tree community in 
Palasamudram

 

Fig. 1 Study area showing distribution of 
elevational gradient
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polarizations in 16-bit digital levels (DN). Backscattering 
coefficient gamma naught values in decibel units were gen-
erated from the DN values for each polarization using Eq. 2. 
and the ratio band (HV/HH) was generated from the linear 
HV and HH bands using the ‘terra’ package in R-4.3.0 [57, 
58] [https://cran.r-project.org/package=terra].

γ0 = 10 ∗ log10(DN2)− 83.0 dB  (2)

2.3.2 Sentinel-1 data

Single look complex (SLC) image data of the European 
Space Agency’s (ESA) Sentinel-1 mission was acquired 
from the Copernicus Open Access Hub [59] [https://datas-
pace.copernicus.eu/], for the same month (December, 2022) 
as that of ALOS PALSAR-2 data in the interferometric wide 
swath (IW) mode. The dataset was dual-polarized with VH 
and VV bands. The pre-processing of Sentinel-1 was done 
using SNAP version 8.0 software [60] [https://step.esa.int/
main/download/snap-download/], involving subsetting, 
calibration, multi-looking, speckle filtering, and terrain cor-
rection. Speckle noise was reduced using the refined Lee 
filter with a 7 × 7 window size. Range Doppler terrain cor-
rection using SRTM 1 s HGT DEM is performed for remov-
ing surface roughness, and pixel values were converted to 
back scattering coefficients in decibels through radiometric 
calibration for both polarizations.

2.3.2.1   H-α  dual  pol  decomposition SAR data can be 
categorized according to its scattering mechanism through 
polarimetric decomposition. H-α dual pol decomposition, 
an incoherent decomposition technique based on eigenvec-
tor and eigenvalue, is a modified version of Cloude and Pot-
tier decomposition [26, 40]. Polarimetric decomposition of 
Sentinel-1 involves the generation of scattering matrix, gen-
eration of the coherency matrix and then the decomposition 
parameters alpha angle (α), anisotropy (A), and entropy (H), 
are determined by using the eigenvalues and eigenvectors 
of the coherency matrix [T] [26, 41]. H ranges from 0 to 1, 
defining the degree of scatter randomness. It is proportional 
to the degree of depolarization and the number of dominat-
ing scattering processes [27] and is given as Eq. 3.

H =
∑2

i=1
(−Pilog2Pi) (3)

where

Pi =
λi∑2
j=1 λj

sampled for vegetated landscape is 0.70%. The methodol-
ogy adopted for the study is given in Fig. 5. The diameter at 
breast height and height for individual trees were measured. 
Then the pan-tropical equation suitable for multiple species 
proposed by Chave et al., 2014 (Eq. 1) was used to calculate 
the plot level AGB [39].

AGB = 0.0673 ∗ (ρ ∗D2 ∗H)0.976  (1)

where AGB is above ground biomass in kg, ρ is specific 
wood density in g/cm3, D is diameter at breast height (DBH) 
in m, and H is height in m.

2.3 Remote sensing data processing

2.3.1 ALOS PALSAR-2 data

We acquired ScanSAR L-band data of ALOS-2 PALSAR-2 
(Level 2.2) having a spatial resolution of 25 m for the 
month of December, 2022 through Google Earth Engine 
(GEE) [56] [https://code.earthengine.google.com/]. The 
level 2.2 data are preprocessed for radiometric and topo-
graphic corrections. The data has acquisition in HH and HV 

Fig. 4 Mixed scrub and dry grassland

 

Fig. 3 Linear stratum of trees outside forests representing Tamarindus 
indica
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αi = cos−1
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All the raster layers generated were resampled to 100 m grid 
size through the bilinear interpolation approach.

2.3.3 Sentinel-2

The cloud free Sentinel-2 Level 2 A product acquired on 
17th February 2023 was downloaded for calculating the 
most widely utilized vegetation index, Normalized Differ-
ence Vegetation Index (NDVI). NDVI was calculated in 
ArcMap 10.8 software for masking out non-vegetated areas, 
including water bodies and barren lands. NDVI quantifies 
the vegetation by evaluating the difference between the two 
spectral bands of the photosynthetic output, NIR and red 
bands. NDVI is a standardized way to measure the healthy 
vegetation whose value falls between − 1 and + 1, where the 
higher value indicating healthy or dense vegetation and the 

and λ is the local eigenvalue. In terms of the variations in 
scattering mechanisms, anisotropy (A) offers further details 
regarding H, quantifying the difference in strength between 
the primary and secondary scattering mechanisms, which is 
correlated with the degree of polarization of the signal [27]. 
A is calculated as Eq. 4:

A =
λ1 − λ2

λ1 + λ2
 (4)

Again, the α parameter can be used to identify the differ-
ent scattering mechanisms like volume, double-bounce, and 
surface scattering. It can be computed using the Eq. 5.

α =
∑2

i=1
Piαi  (5)

where

Fig. 5 Workflow of the methodol-
ogy adopted
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HV polarizations and the band ratio (HH/HV) were used as 
the variables. Further, the variables from both sensors were 
combined for developing the third model (M3).

2.6 Model evaluation and assessment

Only the 1 ha plots where the number of trees was greater 
than 10 were considered in building the model and accu-
racy assessment. Considering the plots with less number of 
trees could possibly reduce the prediction accuracy as the 
signal strength will be insignificant. Additionally, to avoid 
the model overfitting, the data was split into testing and 
training datasets after the outliers were removed. 80% of the 
data was utilized as the training dataset, while the remaining 
20% was used for testing. Three indices were calculated for 
accuracy assessment, such as the coefficient of determina-
tion (R2), mean absolute error (MAE), and root mean square 
error (RMSE), and values were compared for the models. 
The value of R2 spans from 0 to 1, with the values closer 
to one indicating the best fit of the model. The discrepancy 
between the actual and anticipated values is measured by 
the RMSE value. The model fits the data better when the 
RMSE and MAE values are lower. The metrics’ calculation 
equations are given as:

R2 = 1−
∑n

i=1(yi − ŷi)
2

∑n
i=1

(
yi −

−
yi

)2

RMSE =

√√√√
n∑

i=1

(ŷi − yi)
2

N

MAE =
1

N

n∑

i=1

|ŷi − yi|

where, yi
and ŷi  are the observed and predicted AGB, 

respectively, −yi  is the mean of observed AGB, and N is the 
number of data used for evaluation.

3 Results

A total of 2884 trees were found in the 900-ha area with 
314 sampling plots, where the number of trees ranged from 
1 to 185 in individual plots. The number of 1 ha plots with 
trees more than 10 was 67. The plot level in situ AGB varied 
between 0.01 t/ha and 45.86 t/ha, among which only 8 plots 
were having AGB greater than 10t/ha. The boxplot of field 
assessed AGB is given in Fig. 6.

lower value indicating less or no vegetation [42]. NDVI was 
calculated using Eq. 6. and the areas where the NDVI values 
were less than 0.2 were masked out to get the vegetation 
cover of the study area.

NDVI =
NIR − Red
NIR + Red

 (6)

2.4 Statistical analysis

A total of 8 variables were derived from the radar data, 
which includes the backscattering coefficients for HV and 
HH polarizations and the ratio band (HV/HH) from ALOS 
PALSAR-2, the backscattering coefficients for VH and VV 
polarizations, and the polarimetric decomposition param-
eters alpha angle (α), anisotropy (A), and entropy (H). The 
degree to which field-observed AGB and the remote sensing 
variables are related was analyzed for the field calculated 
AGB values by Pearson correlation analysis. Further multi-
collinearity analysis was done before generating the models. 
Multicollinearity is a state where the predictors in a regres-
sion model are linearly dependent. The polarimetric decom-
position parameters, entrtropy and alpha, were removed due 
to multicollinearity.

2.5 Random forest (RF) modeling

Random Forest (RF), a powerful machine learning algo-
rithm, was put forwarded by Breiman Leo in 2001, and 
is mainly used for regression, classification, and survival 
analysis [43]. The bagging algorithm is utilized in RF to 
partition the training datasets into bootstrap datasets, which 
are sub-training datasets. The bootstrap datasets typically 
contain two-thirds of the whole samples from the training 
datasets; these datasets are referred to as “in-bag” data since 
they are used to test the RF model, and the remaining data is 
referred to as “out-of-bag” data [5, 34].

Three models were developed with individual sensor 
data and their combinations using the RF algorithm using 
the ‘randomForest’ package in R-4.3.0 [61] [https://cran.r-
project.org/package=randomForest], where field observed 
AGB was taken as the dependent variable and parameters 
from remote sensing as the independent variables.

Three prediction models, Model-1 (M1), Model-2 (M2), 
and Model-3 (M3), were generated using the RF algorithm 
for each individual sensor and in combination of both sen-
sors with the test data. The model generated with Sentinel 1 
data, M1, gamma naught for VV and VH polarizations, along 
with the polarimetric decomposition parameter anisotropy 
(A), was used. For ALOS PALSAR based model, M2, the 
backscattering coefficient gamma naught for both HH and 
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for the correlation coefficient. Perhaps the R2 values were 
lower for the polarimetric decomposition parameter from 
Sentinel-1, with the R2 values less than 0.01. The correla-
tion of various attributes with field observed AGB is shown 
in Fig. 7.

On validating the different models generated, it was 
found that the R2 values for all the models ranged between 
0.44 and 0.64, and the RMSE and MAE were between 1.89 
t/ha and 2.49 t/ha and 1.56 t/ha and 1.99 t/ha, respectively. 
The highest R2 value (0.64) was given by M1, which used 
Sentinel-1 variables, with RMSE 2.33 t/ha and MAE 1.76 t/
ha. The lowest R2 (0.44) value was given by M2, in which 
the ALOS PALSAR-2 variables were used. All three mod-
els gave adequate performance in the estimation of AGB. 
The R2, RMSE, and MAE values for the models is given in 
Table 1. Though the highest R2 value is given by M1, the 
least RMSE and MAE were given by M2. Fig. 8 displays 
the scatter plot of the models’ predicted and observed AGB. 
After calculating the variable importance factor for each 
model, it was found that, for model M1, VV polarization 
contributed more than VH polarization. HV polarization 
was the most crucial parameter for M2, followed by HV/
HH and HH polarization.

For the field calculated AGB, the highest correlation was 
obtained for the cross polarized bands from both sensors. 
Among them, the HV band of ALOS PALSAR-2 had the 
maximum correlation coefficient (R2) of 0.16, and thereaf-
ter, VH band of Sentinel-1 had R2 value 0.11. The ratio band 
from ALOS PALSAR-2 and the VV polarization of Senti-
nel-1 showed a similar relationship, giving a value of 0.08 

Table 1 Validation matrix for three models
Validation matrix M1 M2 M3

R2 0.64 0.44 0.62
RMSE 2.33 1.89 2.49
MAE 1.76 1.56 1.99

Fig. 7 Correlation of various 
attributes with field observed AGB; 
AGB vs (a) HH polarization (b) 
HV polarization (c) HV/HH of 
ALOS PALSAR-2 data (d) alpha 
(e) anisotropy (f) entropy (g) VH 
polarization and (h) VV polariza-
tion of Sentinel-1

 

Fig. 6 Boxplot for field observed AGB
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less attention as compared to forests. The interest and con-
cern for estimating the biomass of ecosystems have been 
expanding over the past decades and remote sensing tech-
nology provides precise and transferable methodologies for 
this objective. While the potential of SAR data has been 
explored for AGB estimation, it was mostly in forested 
areas. In the present study in a semi-arid region, vegetation 
biomass was estimated using multi-frequency SAR data and 
the machine learning algorithm, random forest. The inten-
tion of the study was not only to estimate biomass but also 
to evaluate the performance of both Sentinel-1 (C-band) and 
ALOS PALSAR-2 (L-band) individually as well as syner-
gistically in estimating the biomass of trees outside forest in 
semi-arid regions.

Studies have indicated a significant correlation between 
the variables of radar remote sensing and above-ground bio-
mass, depending on the features of the vegetation canopy 
[44, 45]. It is obvious that the strength of the relationship var-
ies strongly for forested areas and sparsely vegetated areas. 
The correlation of radar derived parameters in the current 
study showed a weak correlation to the field observed AGB; 
nonetheless, the cross-polarizations were having the high-
est correlation coefficient values. Different polarizations are 
sensitive to different scattering mechanisms, for instance, 
VV polarization is more sensitive to surface scattering due 
to water or bare soil, HH polarization is sensitive to double 
bounce scattering resulting from buildings and tree trunks, 
whereas the cross-polarizations VH and HV are more 

Again, HV was the most important parameter in M3, fol-
lowed by VV and VH polarizations, ratio band, HH polar-
ization, and entropy. In M1 and M3, where polarimetric 
decomposition parameters were employed, it came as the 
least contributing factor. Above it, Sentinel-2 derived NDVI 
was used to mask out the water bodies, the built-up area, 
and the barren lands. The vegetation cover occupies an area 
of 1279 km2 (49.44%) of the regional landscape. Then the 
AGB map for the vegetation cover of the entire study area 
was generated by extrapolating the model as the area shares 
similar physiography, mosaic land use, and climatic char-
acteristics. The spatial distribution of AGB in the semi-arid 
regional landscape shows predominantly low biomass in the 
area (Table 2). The maps for AGB distribution in the study 
area based on different models are shown in Fig. 9.

4 Discussion

Biomass estimation of vegetation is very essential in semi-
arid regions of India, as it is one among the largest climatic 
regions in India. The tree biomass outside forests received 

Table 2 Distribution of AGB based on three models
AGB M1 M2 M3

Low (< 3t/ha) 549.69 680.64 485.79

Medium (3–7 t/ha) 399.84 356.29 560.32

High (> 7t/ha) 132.07 52.41 41.35

Total 1081.60 1089.35 1087.45

Fig. 8 Observed AGB vs predicted 
AGB scatter plot for (a) M1, (b) 
M2, (c) M3

 

1 3



Estimating above-ground biomass of trees outside forests using multi-frequency SAR data in the semi-arid…

backscattering coefficient for VH polarization of Sentinel-1 
had a higher correlation (R2 = 0.63) than for the VV polar-
ization (R2 = 0.44) in the Shorea robusta dominated forest 
cover [10]. Similarly, Otukei and Emanuel, 2015, found a 
stronger correlation of AGB with the backscattering coef-
ficient of HV polarization than with the HH polarization in 
the Bwindi Impenetrable National Park of Uganda [8]. Fur-
ther, VH polarization was found to be more prominent than 
VV by Forkuor et al., 2020 [6]. The higher relationship of 
the cross polarized bands (VH and HV) indicates that they 
capture the structural information of the vegetation better 
than the co-polarized bands (VV and HH) [10].

Again, the Sentinel-1 image attributes produced by Dual-
Polarimetric Decomposition displayed the least R2 values. 
Jesus et al. (2023) employed the alpha angle and entropy 
derived from the Sentinel-1 dual-polarization decomposi-
tion technique to estimate the above-ground biomass (AGB) 
of arboreal Caatinga. Their findings indicated a limited cor-
relation between the calculated alpha angle, entropy values, 

sensitive to volume scattering from the foliage and branches 
of the tree canopy [44]. Specifically for biomass estimation, 
these cross-polarizations stand out due to their unique abil-
ity to capture the complex structural details within the veg-
etation stands, which are important in assessing AGB. The 
change in polarization from transmit to receive facilitates 
a more detailed identification of the complex interactions 
within forest canopies, enhancing the accuracy of AGB 
measurements. Moreover, VH and HV polarizations are 
more effective at mitigating the effects of surface charac-
teristics, like soil moisture and texture, thereby providing 
a clearer and more direct assessment of AGB. This focus 
on the vegetative structure, rather than surface properties, 
enhances the efficacy of VH and HV polarizations in forest 
AGB estimation, ensuring more reliable results. The above 
findings have been confirmed by a number of previous stud-
ies [46–49] that have demonstrated comparable results. The 
findings of our study gave similar results to those in the pio-
neer studies. Roy et al., 2020 in their study found that the 

Fig. 9 Map of AGB distribution 
based on (a) M1, (b) M2 and (c) 
M3
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tool for estimating biomass and productivity across local, 
regional, and global scales in recent times [55].

Our study highlighted the potential of SAR sensors oper-
ating at both C and L-bands are advantageous for estimat-
ing the spatial variation in AGB of vegetation outside the 
forest ecosystem. This study endeavoured to estimate the 
vegetation biomass across a regional scale with similar bio-
geographical, climatic, and agro-ecological conditions. The 
findings of the study are advantageous for understanding the 
dynamic changes in vegetation and promoting sustainable 
land management.

5 Conclusions

The estimation of the above ground biomass of trees has 
attracted a lot of attention in the scientific world; perhaps 
most of the studies concentrated on forest ecosystems. Our 
study evaluated the utility of two widely used SAR sensors, 
Sentinel-1 and ALOS PALSAR-2, in estimating AGB for 
semi-arid, the most predominate region. Three models were 
generated using the random forest algorithm, utilizing the 
data from the sensors solely and synergistically. R2, RMSE, 
and MAE were used for validating the models, and they 
showed values ranging from 0.44 to 0.64 for R2, from 1.89 t/
ha to 2.49 t/ha for RMSE, and from 1.56 t/ha to 1.99 t/ha for 
MAE. The findings of the study demonstrate that the freely 
available versions of both sentinel-1 and ALOS PALSAR-2 
data, individually and in combination, have immense poten-
tial for reliable biomass estimates in semi-arid regions 
with sparse vegetation cover, employing machine learning 
algorithms. Furthermore, the results of the study contrib-
ute valuable insights into AGB estimation methodologies, 
large area ecological plot, and emphasizing the significance 
of SAR remote sensing in monitoring biomass dynamics in 
challenging ecosystems in India’s semi-arid regions, which 
in turn would provide valuable information for ecological 
restoration.
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and the AGB [28]. However, the combined use of the attri-
butes provided better accuracy (R2 = 32.05%). Since, the 
pixels had a mixture of vegetation and bare soil, giving dif-
ferent scattering mechanisms, it is advantageous to explore 
the use of decomposition parameters.

A weak relationship was observed between the inde-
pendent variables and field AGB in the study. This weaker 
correlation of the radar parameters can be due to the contri-
bution of ground to the backscatter values since the impacts 
of soil factors such as soil roughness and moisture content 
in regions with sparse vegetation cover can affect the spec-
tral responses, especially in semi-arid zones [3, 6, 50]. In 
addition, the SAR signal and plant canopy have a volumet-
ric relationship, meaning that the amount of vegetation in a 
given pixel has a major impact on the SAR signal [13]. In 
the current study area, the vegetation is mostly scattered, so 
the exposure of soil has possibly affected the SAR signal.

The random forest models developed for biomass esti-
mation using SAR data, gave acceptable performance, sug-
gesting the potential of both L-band ALOS PALSAR-2 and 
C-band Sentinel-1 in estimating AGB in the selected semi-
arid area. The results of our study agree with the previous 
studies, including the study by Jesus et al., 2023, where the 
attributes derived from Sentinel-1 were used for estimat-
ing the biomass of the Caatinga biome and found that the 
band ratio VH/VV, H, α,dual polarization synthetic aperture 
radar vegetation index (DPSVI) and cross-polarized VH for 
the intermediate period, and co-polarized VV for the green 
period were highly contributing to the regression model [28]. 
Wang et al., 2021 also found that the RADARSAT-2 C-band 
SAR data produced higher accuracy in stepwise multiple 
linear regression, in which the R2 value ranged from 0.34 
to 0.42 in the desert steppe [51]. Furthermore, the study 
noticed the underestimation of AGB in a few high biomass 
sites, suggesting the saturation of the model. Similar results 
were found by Bispo et al., 2020, in mapping the woody 
biomass of the Brazilian Savanna, with an underestimation 
of higher AGB levels and an overestimation of lower AGB 
levels [52]. The saturation of random forest modeling was 
observed in the study by Su et al., 2020, as well, with under-
estimation and overestimation of biomass in the subtropical 
forests in the northern Guangdong Province of China [36]. 
The range of predictions that random forest regression can 
generate is limited by the biggest and lowest values in the 
training set of data. As a result, estimates in the higher range 
may be underestimated, and those in the lower range may 
be overestimated [53]. Even though machine learning algo-
rithms offer more effective means for establishing the com-
plex non-linear relationships of remote sensing data with 
ecological features, they also come with certain associated 
problems, including the underestimation and overestimation 
of the data [54]. Remote sensing has proven to be a valuable 
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