
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tres20

International Journal of Remote Sensing

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tres20

A comparative study on the efficacy of dual-
pol and full-pol ASAR data in radiative transfer
modeling for forest above-ground biomass
estimation

Faseela V. Sainuddin, Sanid Chirakkal, Smitha V. Asok & Deepak Putrevu

To cite this article: Faseela V. Sainuddin, Sanid Chirakkal, Smitha V. Asok & Deepak Putrevu
(2024) A comparative study on the efficacy of dual-pol and full-pol ASAR data in radiative
transfer modeling for forest above-ground biomass estimation, International Journal of
Remote Sensing, 45:3, 719-747, DOI: 10.1080/01431161.2024.2302952

To link to this article:  https://doi.org/10.1080/01431161.2024.2302952

Published online: 29 Jan 2024.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tres20
https://www.tandfonline.com/loi/tres20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01431161.2024.2302952
https://doi.org/10.1080/01431161.2024.2302952
https://www.tandfonline.com/action/authorSubmission?journalCode=tres20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tres20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01431161.2024.2302952
https://www.tandfonline.com/doi/mlt/10.1080/01431161.2024.2302952
http://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2024.2302952&domain=pdf&date_stamp=29 Jan 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2024.2302952&domain=pdf&date_stamp=29 Jan 2024
Rectangle

Rectangle

Rectangle

Rectangle



A comparative study on the efficacy of dual-pol and full-pol 
ASAR data in radiative transfer modeling for forest 
above-ground biomass estimation
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and Deepak Putrevu b

aDepartment of Environmental Sciences, All Saints’ College, Thiruvananthapuram, India; bAdvanced 
Techniques Development Division (ATDD), Space Applications Centre, ISRO, Ahmedabad, India

ABSTRACT
In this study, a comprehensive evaluation of the potential of dual- 
polarization and full-polarization L- and S-band airborne SAR (LS- 
ASAR) data (ISRO’s dual-frequency airborne SAR mounted on 
NASA’s Gulfstream III aircraft) in forest above-ground biomass 
(AGB) estimation has been carried out. The study area comprises 
the temperate forests of the Lenoir landing site in Southwest 
Alabama, United States of America. A trunk scattering model 
based on Vector Radiative Transfer (VRT) theory is used in this 
study to estimate the AGB. Full-polarization ASAR data inversion 
retrieves three critical biophysical parameters: tree height, diameter 
at breast height (DBH), and tree count, whereas with dual- 
polarization ASAR data, the model is limited to retrieving only two 
parameters (tree height and DBH). These parameters are then 
employed in a suitable allometric equation to estimate the AGB 
over the study area. Validation of the retrieval results is performed 
through comparison with ground-truth measurements taken from 
the study site. The findings demonstrate that the inversion of 
L-band full-polarized data yields the highest correlation (R2 = 0.87, 
RMSE = 20.37 t/ha), revealing high accuracy in AGB estimation. The 
L-band dual-polarized data shows a high correlation (R2 = 0.83, 
RMSE = 30.66 t/ha), indicating reasonable accuracy. However, the 
S-band data, both full and dual-polarized, reveals weaker correla-
tions with higher RMSE values (R2 = 0.59, RMSE = 55.07 t/ha, and 
R2 = 0.49, RMSE = 58.31 t/ha, respectively), suggesting a lower degree 
of reliability. This study emphasizes the pre-eminence of L-band fully 
polarized data inversion for reliable and accurate AGB estimation 
while also showing the utility of relatively ubiquitous dual-pol data 
(L-band) to achieve reasonable accuracy for the same.
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1. Introduction

Forests significantly contribute to combating climate change by acting as natural carbon 
storage systems in the global carbon balance (Van der Werf et al. 2009). Understanding 
carbon stocks and fluxes is vital for assessing the carbon cycle’s current state and its 
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response to climate change (Martin, Thomas, and Chave 2011). To understand the link 
between forest biomass and its carbon content, it’s vital to have detailed insights into 
forest biomass, taking into account its regional variations and changes over time (Martin, 
Thomas, and Chave 2011).

However, the spatial variability of forest carbon stocks and fluxes remains poorly 
quantified (Quegan et al. 2019). Hence, calculating forest biomass seeks to minimize 
ambiguities in global carbon dynamics and deepen our knowledge of carbon reservoirs 
and emissions from forests (Le Toan et al. 2011). The growing availability of SAR data has 
facilitated research across a wide range of fields (Modava, Akbarizadeh, and Soroosh 2018,  
2019; Periasamy 2018), which has in turn led to the development of different methods, 
notably in the estimation of above-ground biomass in forests.

The estimation of above-ground biomass (AGB) using synthetic aperture radar (SAR) 
backscatter has been extensively investigated in a variety of forest habitats, from tropical 
to boreal (Bouvet et al. 2018; Santoro and Cartus 2018; Tanase et al. 2014). Airborne and 
satellite SAR sensors have been employed to gauge forest characteristics across different 
radar frequency bands, including p-, L-, S-, C-, and X-bands (Mitchard et al. 2014; Saatchi 
et al. 2011). The radar sensitivity to forest structure varies with wavelength (or frequency), 
polarizations, and incidence angles, all of which have impacts on the penetration cap-
ability of microwave radiation into the canopy and the backscattering from canopy 
elements (Du, Ulaby, and Dobson 2000; Saatchi and McDonald 1997). Additionally, the 
type of canopy (from intact to open, homogeneous to complex structure) and environ-
mental factors like moisture content affect the sensitivity of radar signals to forest 
structure (Lucas et al. 2010). The sensitivity of radar backscatter to AGB varies across 
different polarizations and frequencies. This is evident across multiple frequency bands. 
For instance, in the P-band with a wavelength of 30–100 cm (Saatchi et al. 2011; Sandberg 
et al. 2011; Santos et al. 2003), the L-band spanning 15–30 cm (Cartus, Santoro, and 
Kellndorfer 2012; Lucas et al. 2010), the S-band covering 7.5–15 cm (Ningthoujam et al.  
2016, 2017), and the C-band ranging from 4–8 cm (Dobson et al. 1995; Pulliainen, 
Kurvonen, and Hallikainen 1999). In general, these studies have revealed that long 
wavelengths, like the L- and P-bands, are more sensitive to AGB than the S- and C-band 
data (Luckman, Baker, and Wegmueller 2000; Naidoo et al. 2015; Saatchi et al. 2011). This 
can be attributed to the rapid attenuation of shorter wavelengths as they traverse the 
forest canopy and interact with the woody components. In contrast, longer wavelengths 
experience less attenuation, enabling the backscatter signal to capture and correlate with 
information from the woody elements, thus establishing a stronger relationship with AGB. 
Previous studies revealed that the backscatter from high-frequency bands seems to 
saturate at lower levels of above-ground biomass ranging between 20 and 50 t/ha 
(Castro, Sanchez-Azofeifa, and Rivard 2003; Imhoff 1995; Luckman, Baker, and 
Wegmueller 2000), the L-band backscatter has a sensitivity on AGB ranging from 75 to 
150 t/ha (Cartus, Santoro, and Kellndorfer 2012; Neumann et al. 2012; Robinson et al.  
2013), and with the P-band, it can reach up to 300 t/ha (Hoekman and Quiriones 2000; Le 
Toan et al. 2011; Saatchi et al. 2011, 2007; Sandberg et al. 2011). Most studies on the 
estimation of forest above-ground biomass employing synthetic aperture radar were 
focused on using L-band data due to the lack of P-band space-borne SAR data and the 
studies consistently highlight the high temporal consistency and greater sensitivity of 
L-band SAR in capturing forest biophysical attributes, surpassing the abilities of shorter 
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wavelength SAR (Askne et al. 2003; Baker and Luckman 1999; Sandberg et al. 2011; 
Santoro et al. 2006, 2009). Furthermore, studies have indicated that among the SAR 
backscatter intensities, cross-polarization demonstrates the highest sensitivity in estimat-
ing above-ground biomass (Balzter et al. 2002; Castel et al. 2001; Dobson et al. 1992; 
Ranson and Sun 1994).

Estimating forest AGB from SAR backscatter involves employing a diverse range 
of approaches. In the research conducted by Santoro and Cartus (Santoro and Car 
the methods were grouped into three main categories: empirical regression 
approaches, non-parametric approaches, and semi-empirical or physically-based 
approaches. Empirical regression models (Dobson et al. 1995; Harrell et al. 1997), 
like linear and multiple linear models, are commonly used to link AGB with SAR 
backscatter observations, with improved accuracy achieved through cross-polarized 
data. However, it is crucial to consider potential deviations from the assumed 
linear relationship, leading to under- or over estimation, particularly in certain 
AGB ranges. Non-parametric models (Breidenbach, Næsset, and Gobakken 2012; 
Jung et al. 2013; McRoberts, Gobakken, and Næsset 2012; Mitchard et al. 2013; 
Mutanga, Adam, and Cho 2012; Saatchi et al. 2009) utilize computational algo-
rithms to learn from observations, constructing and refining multiple models until 
convergence is achieved. Their advantage, especially when incorporating multiple 
input and auxiliary datasets, becomes more prominent. However, optimal perfor-
mance often requires a substantial amount of training data, which may be limited 
or unavailable, particularly for large-scale mapping purposes. This study focuses on 
the utilization of the physical model to describe forest backscattered intensity by 
considering the underlying scattering mechanisms within the forest (Antropov 
et al. 2013; Cartus et al. 2011; Cartus, Santoro, and Kellndorfer 2012; Kurvonen, 
Pulliainen, and Hallikainen 1999; Sainuddin et al. 2021, 2023; Santoro et al. 2011). 
In contrast to empirical models, these models provide increased reproducibility due 
to their reduced dependency on field data (Houborg, Soegaard, and Boegh 2007; 
Quan, He, and Li 2015; Yebra et al. 2013). These models, having limited compo-
nents, represent the overall forest backscatter based on forest structural attributes 
and their interactions with microwaves. This modeling approach computes the 
total backscatter by summing the contributions from both the forest canopy and 
the forest floor. Significantly, in forest regions, the L-band backscatter predomi-
nantly originates from the volume scattering of the forest canopy and from the 
ground scattering where there are gaps in the canopy (Chauhan, Lang, and Ranson  
1991; Karam et al. 1995; Pulliainen, Kurvonen, and Hallikainen 1999; Skriver, 
Mortensen, and Gudmandsen 1994; Way et al. 1994). Even though the L-band 
wave can penetrate dense tropical forests, the impact of interactions between 
the trunk and ground on the overall backscatter is typically seen as restricted. 
This is attributed to reasons like diffuse scattering on the uneven forest ground 
and signal attenuation within the canopy layer (Dobson et al. 1992; Pulliainen, 
Kurvonen, and Hallikainen 1999). The comparison of full polarimetric data with 
dual-polarized data for estimating above-ground biomass in forested areas is 
relatively under explored, with only a limited number of existing studies available. 
For instance, Tanase et al (Tanase et al. 2014). conducted a study that evaluated 
parametric and non-parametric models using dual and full polarization systems to 
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estimate AGB in semi-arid forests. In a different study, Pereira et al (Pereira et al.  
2018). investigated the relative efficacy of full-pol SAR data in contrast to single- 
and dual-pol SAR data for AGB estimation in the Amazonian wetlands. Sandberg 
et al (Sandberg et al. 2011). conducted another study where they investigated the 
estimation of above-ground biomass in a hemiboreal forest and compared the 
results obtained from regression models using single and multi-polarizations of 
the L- and p- bands.

In recent years, there has been a notable emphasis among space organizations on 
developing radar sensors specifically designed for observing AGB and forest structures 
from space. One such mission is the NISAR (NASA ISRO SAR) mission, a collaborative effort 
between the US National Aeronautic and Space Administration (NASA) and the Indian 
Space Research Organization (ISRO). The mission aims to launch a SAR satellite that 
provides globally available dual-polarized (HH and HV) L-band (and S-band in certain 
regions) data, offering sensitivity to forest AGB (NISAR 2020). It operates on a 12-day 
repeat pass and uses single-look-complex (SLC) data to obtain a higher spatial resolution 
of less than 10 m. Another project, the BIOMASS mission from the European Space Agency 
(ESA), is set to launch in 2024. This mission will employ a space-borne P-band SAR for the 
first time to retrieve forest height and AGB estimates, providing global coverage of 
tropical forests and partial coverage of boreal forests (European Space Agency 2008; Le 
Toan et al. 2011). These missions, along with other space-borne SAR sensors like the 
German Aerospace Center’s TanDEM-L which is scheduled to launch in 2024, the Japanese 
Advanced Land Observing Satellite-2 Phased Array L-band SAR-2 (ALOS-2 PALSAR-2), and 
the Argentinean SAtélite Argentino de Observación COn Microondas (SAOCOM), contri-
bute to the improved monitoring of global forests.

Currently, there exists a research gap in the systematic evaluation of the dual and full 
polarization modes of SAR data, implemented in the context of radiative transfer (RT) 
modeling, for estimating above-ground biomass. This research explores the efficacy of LS- 
ASAR backscatter, in both dual and full polarization modes, in assessing the above-ground 
biomass in temperate forest areas. Importantly, the LS-ASAR mission, acting as a precursor 
to the NISAR mission, offers valuable insights into the potential of NISAR data for accurate 
AGB estimation. The approach leverages a physical scattering model that combines 
a vegetation layer RT model based on the framework proposed by Karam and Fung 
(Karam and Fung 1988) with the improved integral equation model (I2EM) introduced by 
Fung and Chen (Fung and Chen 2010) to represent the backscattering from the under-
lying surface. By integrating these two models, the total backscatter intensity is simulated. 
In this proposed methodology, the vegetation is represented as a layer devoid of foliage, 
resembling a group of dielectric cylinders of specific heights. This modeling strategy 
allows for the extraction of backscattering data from above-ground woody structures, 
which are presumed to comprise the majority of the tree’s biomass. For the estimation of 
biophysical parameters that are pertinent to AGB, a strategy that involves the constrained 
nonlinear optimization of a cost function was used. In the case of dual-pol L- and S-bands, 
the model allows for the retrieval of tree height and trunk radius. For fully polarized L- and 
S-bands, the methodology enables the retrieval of an additional parameter – tree count – 
alongside tree height and trunk radius. Finally, the retrieved biophysical parameters are 
applied to an allometric equation to estimate the AGB for the entire scene. The key 
novelties of this study include:
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● Systematic evaluation of the dual and full polarization modes of Synthetic Aperture 
Radar data, particularly in the context of radiative transfer modeling, with the aim of 
estimating above-ground biomass.

● An in-depth examination of the utility of LS-ASAR backscatter for estimating above- 
ground biomass and a definitive conclusion as to the performance of one band over 
the other.

● A categorical conclusion with regard to dual-pol versus full-pol S- and L-band SAR data 
in AGB modeling, which is likely to extrapolate in the case of P-band data as well.

The paper is structured as follows: Section 2 outlines the specific study area and details 
the data used for the research. The methodology section (section 3) details the theory of 
simulating backscatter intensities with the scattering model, retrieving biophysical para-
meters, and estimating above-ground biomass for selected SAR frequencies. Section 4 
presents the findings of this study, focusing on the application of LS-ASAR backscatter in 
both dual and full polarization modes for biomass estimation. This section offers 
a comprehensive analysis, comparing the results of this work with established research 
in the domain and evaluating the potential of the given frequencies, in dual or full 
polarization, for accurate forest AGB estimation. The study concludes with final observa-
tions and implications in Section 5.

2. Study area and data

2.1. Study area

The study area, known as the Lenoir landing site, holds special significance as it has been 
meticulously chosen as one of the prime areas of interest for the NISAR mission. The 
region is situated in the southwestern part of Alabama, near the Tombigbee River, and 
falls within the boundaries of the Choctaw National Wildlife Refuge (Figure 1). The study 
site stretches over 706 km2 and its center is located at 31056

0

N and 8809
0

W with elevation 
ranges of 9 to 138 m above MSL. The region has an average annual precipitation of about 
1385 mm and an average annual temperature of 18.10C. Due to the vicinity of the 
Tombigbee River, which is prone to spring floods, several sites in the region are at risk 
of flooding. The area features woody wetlands, deciduous hardwood trees, and meadows. 
The area’s vegetation is primarily characterized by a pine-oak mixed forest with a dense 
canopy, where pines are typically found in elevated areas with relatively lower water 
levels, while oaks are dispersed throughout the entire region, even within the marshy 
wetlands. The common tree species include loblolly pine (Pinus taeda), shagbark hickory 
(Carya ovata), black gum (Nyssa sylvatica), green ash (Fraxinus pennsylvanica), sweetgum 
(Liquidambar styraciflua), mockernut hickory (Carya alba), possumhaw (Ilex decidua), and 
the oaks. The ground cover is also made up of a variety of cypress (Taxodium spp.), poison 
ivy (Toxicodendrom radicans), bamboo, grass, and smilax.

2.2. Forest Inventory and analysis

The field survey was conducted at the Lenoir landing area in conjunction with the LS-ASAR 
validation experiment. The study relied on field survey data conducted by the national 
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Figure 1. Upper left: geographic location of the study area. Upper right: FCC image comprising of HH 
(R), HV (G), and VV (B) intensities of L-band ASAR data over the study area, and the red rectangle 
shows the boundary of the LIDAR data. Lower center: LIDAR AGB map and reference points.
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ecological observatory network (NEON) (NEON 2020) from October to December 2021. 
Fourteen sample plots, each spanning 40 m � 40 m, were chosen within the SAR observation 
zone for evaluation (Figure 2(a)). The collected ground truth information on biophysical 
parameters includes tree count, tree height, DBH, and tree species names. The predominant 
vegetation classes in the study area were determined using the national land cover database 
(NLCD) from the multi-resolution land characteristics consortium (MRLC) (MRLC 2022). 
Although the study area encompasses multiple vegetation classes, the wetlands were the 
sole category with a substantial quantity of data points, allowing for model building. A dual- 
band GPS device was employed to precisely determine the coordinates of the plot bound-
aries. The DBH of all trees exceeding 2.5 cm in diameter within the plot was measured. The 
tree height was measured for all trees in the plot. The ranges of the mean tree height (HT) and 
mean DBH were 7.22 to 15.95 m and 9.12 to 21.72 cm, respectively. Forest parameter statistics 
based on the survey conducted in the study area are presented in Table 1. The study used the 
allometric equation proposed by Stovall et al (Stovall et al. 2018), which is presented in 
Equation (1).

Figure 2. a) landcover map by NLCD with field sample location points for the study site b) frequency 
distribution of field-measured above-ground biomass c) distribution of trees in DBH classes.

Table 1. Summary statistics for field sample data in the study area.
Variables AGB (t/ha) MDBH (cm) MHT (m) Tree Count (trees/ha)

Minimum 32.76 9.12 7.22 137.5
Maximum 156.77 21.72 15.95 575
Mean 76.41 16.79 11.03 237.98
SD 38.09 3.95 2.71 113.95
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Biomass ¼ expðβ0 þ β1 lnðDBH2 � HTÞÞ (1) 

Where β0 ¼ � 2:75, and β1 ¼ 0:919. Figure 2(b,c) display the frequency distribution of 
AGB based on field measurements, as well as the distribution of trees across DBH classes, 
respectively. The total AGB for each plot fluctuates between 32.76 t/ha and 156.77 t/ha, 
with an average value of 76.41 t/ha.

AGB = above ground biomass, MDBH = mean diameter at breast height, MHT = mean 
height, SD = standard deviation.

2.3. AGB reference map

A map delineating reference above-ground biomass is derived from canopy heights 
measured using small-footprint LIDAR technology, aiming to reduce potential dis-
crepancies encountered when directly correlating SAR-AGB relationships with con-
fined plot areas. The canopy height data, constructed at a 1 m resolution, was 
derived using data from the NEON Airborne Observation Platform’s Optech LIDAR 
Gemini instrument (NEON 2020). A power function-based regression, optimized 
through least-squares minimization, is applied to correlate plot-level AGB with 
the LIDAR-measured canopy height (Saatchi et al. 2011). This method results in 
a reference AGB map with a spatial resolution of 1 m. In LIDAR AGB map, 110 
polygons, each measuring (40 m � 40 m) and randomly distributed (Figure 1), are 
selected along with the twelve field-measured sample points to validate the pre-
dicted AGB maps.

2.4. Airborne SAR data

This study used L- and S-band airborne SAR (LS-ASAR) amplitude data acquired at the 
Lenoir landing site on 10th July 2021. Geo-coded level-2 products were downloaded from 
NASA JPL (JPL 2022). LS-ASAR L- and S-band images were radiometrically calibrated using 
the Equation (2). 

σ0ðdBÞ ¼ 10log10ðDN2 � NÞ þ 10log10ðsinðipÞÞ � KdB (2) 

where σ0ðdBÞ is the backscattering coefficient, DN is the digital number, N is the image 
noise bias, ip is the per-pixel incidence angle, and KdB is the calibration constant. LS-ASAR 
is a precursor airborne mission to the space-borne dual-frequency L and S-Band NASA 
ISRO synthetic aperture radar (NISAR) mission, where the L-band is provided by NASA and 
the S-band is ISRO’s contribution. As part of their preparation, NASA and ISRO are sourcing 
and analyzing L- and S-band SAR images using ISRO’s ASAR device. This instrument has 
been attached to NASA’s Gulfstream III plane, employing the antenna pod and navigation 
equipment from NASA’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) 
radar setup. After the completion of Phase 1 in December 2019, the subsequent Phases 2 
and 3 of the ASAR initiative were conducted in June and July 2021. This involved revisiting 
data from Alaska and the Western U.S. and gathering fresh data from New Orleans and the 
Eastern Coast. The system is engineered to function at a height of 8 km and move at 
a speed of 120 m/s. The center frequencies are 3.2 GHz for S-band and 1.25 GHz for 
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L-band. The system design for LS-ASAR is based on the system specifications of NISAR. 
More details on the airborne SAR imagery used for the study are given in Table 2.

3. Methodology

The radiative transfer model employed in this study was utilized for the simulation of SAR 
backscatter with the objective of estimating biophysical variables related to above- 
ground biomass, thereby enabling AGB estimation. The retrieval of biophysical para-
meters was executed through the distinct processing of dual- and full-polarized ASAR 
data in the L- and S-bands. Python scripts were developed for forward modeling as well as 
inverse modeling. These scripts were designed to handle both full-polarization and dual- 
polarization (with simplifying assumptions) data sets. For quantitative analysis of the 
retrieval accuracy, the outcomes were evaluated by comparing them to ground truth 
data. The methodology is structured around three major steps.

(1) Simulating backscatter intensities from the vegetation canopy using the integrated 
RT & I2EM models

(2) Estimating the biophysical parameters from the simulated backscatter intensity by 
the application of constrained non-linear optimization of a cost function

(3) Estimation of above-ground biomass for the entire scene of L-band (Full and dual- 
pol) and S-band (Full and dual-pol).

Figure 3 illustrates the comprehensive methodology framework.

3.1. Simulation of Backscatter Intensities

The dielectric cylinder model adopted in this study was originally introduced in (Karam 
and Fung 1988). In the model, the vegetation stands were segmented into two distinct 
layers: a layer comprising dielectric finite-length cylinders representing defoliated trunks, 
and the underlying rough ground layer. The total backscatter intensity (σ0) of a pixel is the 
sum of contributions from both the trunk layer and the ground layer below. The simula-
tion focused solely on the defoliated trunks and did not consider saplings, lianas, or 
under-story vegetation. The backscattering coefficient for the layer containing circular 
cylinders placed over a rough floor was determined using the first-order solution of the 

Table 2. Characteristics of LS-ASAR data.
Characteristics Descriptions

Frequency (GHz) L-band: 1.25 & S-band: 3.2
Polarizations full-Pol (HH, HV, VH, VV)
Product type L2-GEOREF
Look direction left
Pixel spacing 2 m � 2 m
Near incidence angle (degrees) 26
Far incidence angle (degrees) 53
Acquisition date July 10, 2021
Acquisition type stripmap
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radiative transfer equation. The expression for the total backscattering coefficient, 
denoted as σ0

total , is given by: 

σ0
total ¼ σ0

trunk þ σ0
ground (3) 

where σ0
trunk represents the backscattering coefficient of the trunk layer and σ0

ground repre-
sents the backscattering coefficient of the ground layer. For simulating the backscattering 
coefficients (full-pol being HH/HV/VV and dual-pol being HH/HV) at the L- and S-bands, 
alterations were applied to the initial backscatter framework suggested by Karam and Fung 
(Karam and Fung 1988). The backscattering coefficient, denoted as σ0

trunk , for the layer of 
cylinders that signifies the trunk, is illustrated by the subsequent formula: 

σ0
trunk ¼ 4π cos Θi=< Kp

e ðiÞ > þ < Kq
e ðiÞ >

� �
g

� f1 � exp � < Kp
e ðiÞ> þ < Kq

e ðiÞ >
� �

n0dsecΘi
� �

g

� < jfpqði; iÞj2 >
(4) 

In the above equation, n0 stands for the tree count density of cylinders for each unit of 
volume, and d denotes the thickness of the layer populated by vegetation. The incidence 
angle is represented by Θi. The term < jfpqð� i; iÞj2 > refers to the measure of the scattering 
amplitude and < Kp

e ðiÞ > represents the extinction coefficient within the cylinder layer.
The complexity and stochastic nature of the medium are interpreted by analyz-

ing the orientation of the trunks using probability density functions. It is presumed 
that the layer of cylindrical scatterers exhibits uniform orientation in the azimuthal 
direction. In the absence of correlation between the orientation angles of the 

Figure 3. Schematic work-flow for retrieval of above-ground biomass from the integrated microwave 
scattering model.
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cylinders, the succeeding Equation (5) can be employed to estimate the joint 
probability distribution function: 

pðα; β; γÞ ¼ pðαÞpðβÞpðγÞ (5) 

In the equation, the angles mentioned are recognized as the Tait-Bryan angles. Due to the 
symmetric property of cylinders, these can be appropriately defined by applying Euler 
angles. 

γ ¼ 0 and pðγÞ ¼ 1
(6) 

For more details of the cylinder model, refer to these previous studies (Karam and Fung  
1982, 1988; Sainuddin et al. 2021, 2023; Wait 1955, 1959). The scattering model developed 
by Karam and Fung Karam and Fung (1988) employs the Kirchhoff model in the scalar 
domain to calculate soil backscatter. This technique characterizes the scattering proper-
ties of a rough soil surface, assuming the soil to be a smooth, gently undulating dielectric 
continuum. However, this assumption has proven inadequate for modeling radar scatter-
ing across a wide range of soil moisture and surface roughness. To offer a more robust 
simulation of soil surface scattering, the study adopts an advanced model known as the 
improved integral equation model (I2EM), initially proposed by Fung and Chen (Fung and 
Chen 2010). The I2EM model for surface backscatter is remarkably adaptable and applic-
able to numerous soil surface situations. The general equation, expressed in Equation 7, 
enables the computation of the backscattering coefficient from the surface layer utilizing 
the I2EM model. 

σ0
ground ¼

k2

4π
exp½� 4k2

z σ2�f ð2kzσÞfpp þ
σ
4
ðFpp1 þ Fpp2Þ

�
�
�

�
�
�

2
wð2k sin Θ; 0Þ

þ
X1

n¼2

ð2kzσÞnfpp þ
σ
4

Fpp1ð2kzσÞn� 1
�
�
�

�
�
�

2 wnð2k sin Θ0; 0Þ
n!

g

(7) 

In this equation, the symbols p ¼ v; h represent different polarizations, with k being the 
radar wave number. The term σ is used to denote the RMS height, and Θ symbolizes the 
incidence angle. The terms fvv and fhh be represented by the following equations: 
fvv ¼ 2Rv= cos Θ and fhh ¼ � 2Rh= cos Θ, where Rv and Rh stand for Fresnel reflection 
coefficients associated with vertically and horizontally polarized waves, respectively. The 
factors w and wn correspond to the surface spectra of the two-dimensional Fourier 
transforms of the correlation coefficient and its nth power, respectively. For 
a comprehensive understanding of the equation, refer to the work of Fung and Chen 
(Fung and Chen 2010).

In order to simulate the backscatter intensities, the integrated RT & I2EM models 
utilize a specific set of input parameters, including SAR frequency, incident angle, 
polarization, soil moisture, surface RMS height, correlation length, vegetation dielectric 
constant, tree height, tree count density, and trunk radius. While some variables, such 
as tree count density or tree height, can be directly measured, others, like correlation 
length or RMS height, pose significant challenges in their measurement. In such cases, 
estimated values or values obtained from relevant literature were utilized. In this 
study, Figure 4 provides, in block-diagram format, the list of canopy, surface, and 
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SAR system parameters required to specify the model to simulate the total back-
scattering coefficient (σ0

total) from the vegetated terrain. Table 3 shows the parameters 
required as input for the scattering models. The dielectric constant for the surface 
layer was estimated using Topp’s equation (Topp, Davis, and Annan 1980) based on 
data from the average soil moisture content obtained from the Soil Moisture Active 
Passive (SMAP) satellite. The RMS height was sourced from the documentation avail-
able for the Lenoir landing site (NEON 2020). In the context of SAR applications, the 
sensitivity of SAR signals to variations in soil surface RMS height is recognized as 
a critical factor influencing surface scattering. This understanding is supported by 
several key studies in the field (Bryant et al. 2007; Dubois, Van Zyl, and Engman  
1995; Oh, Sarabandi, and Ulaby 1992; Shi et al. 1997), which collectively highlight 
the reduced impact of spatial correlation due to SAR azimuthal processing and multi- 
looking. Based on this literature consensus, an approximate value for the correlation 
length was adopted. The tree count density per unit volume (n0) and the vegetation 
dielectric constant were fixed in the case of dual-polarization SAR data inversion, while 
for full-polarization SAR data inversion, only the vegetation dielectric constant was 
fixed. A detailed description of this procedure is available in the following subsection.

3.2. Inversion of simulated backscatter intensities

The process of retrieving biophysical parameters from the backscatter coefficients simu-
lated from the integrated scattering model constitutes the inversion problem in this 
context. To unravel this problem, the study employed a unique hybrid Iterative 

Figure 4. Block-diagram representation of the canopy, surface, and SAR system parameters for the 
integrated microwave scattering model.

Table 3. Input parameters for scattering models.
Layer Parameter Values

Surface Layer Correlation length (m) 0.08
RMS Height (m) 1.3
Dielectric Constant 11.12–1.12j

Canopy Layer Dielectric Constant (dual & full-pol) 9.37+3.15j
Tree Count Density (m� 3) (dual-pol) 0.025
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Optimization (IO) strategy that combines Genetic Algorithms (GA) (Goldberg 1989) and 
a gradient-based minimization method, leveraging the strengths of both evolutionary 
and conventional optimization techniques. This method is founded on the principle of 
optimizing a merit function, specifically the difference between the observed and the 
model-simulated backscatter coefficients. If Y represents the vector of backscatter coeffi-
cients, its relationship with the model M and the vector of input parameters can be 
mathematically represented as: 

Y ¼ MðΘ;XÞ þ � (8) 

In this context, Θ represents the array of model input parameters. Throughout the 
inversion procedure, a value function S(X) is minimized for n data points to derive X, 
which are the optimized values of tree biophysical characteristics. 

SðXÞ ¼
Pn

i¼1
Yi � MðΘ; XiÞ½ �

2 (9) 

The nonlinear evaluation function can be tackled through the integration of evolutionary 
and conventional optimization algorithms. A starting point for the parameters is neces-
sary, and they are repeatedly refined until the value function is close to its minimum 
values. It is relevant to understand that the optimization problem is non-linear, bound by 
constraints, and deals with a scalar function of multiple variables. To manage these 
characteristics, the hybrid strategy first employs the GA for a global search over the 
parameter space. The parameter bounds for height, trunk radius, and tree count density 
per unit volume (n0) are strictly defined, ranging from 3 to 25 m, 0.03 to 0.5 m, and 0.0001 
m� 3 to 0.05 m� 3 respectively. To offer clarity and match conventional metrics, the trunk 
radius and tree count density per unit volume are then converted to diameter at breast 
height (DBH) and tree count (total number of trees per hectare), respectively. Post-GA, the 
solution is further refined using the gradient-based Limited-memory Broyden-Fletcher- 
Goldfarb-Shanno (L-BFGS-B) algorithm (Morales 2002). This technique ensures that the 
optimal parameter values, which minimize the merit function, fall within the predefined 
parameter ranges. This combination of GA and L-BFGS-B forms a robust hybrid optimiza-
tion framework that can efficiently solve the non-linear, constrained nature of the pro-
blem, providing a reliable solution.

The inversion procedure for dual polarization data necessitated the fixation of two 
parameters of the forward model, specifically the tree count density per unit volume 
ðn0Þ and the dielectric constant associated with vegetation. This was achieved through 
the use of two ground-measured sample points (which are then not used in subsequent 
validation of AGB and other parameters). For the full-pol data inversion, only the 
vegetation dielectric constant was held constant. For the corresponding date, soil 
moisture data was obtained from the Soil Moisture Active Passive (SMAP) satellite. 
Other key parameters, including the surface RMS height, were obtained from existing 
literature, while an approximate value was utilized for the correlation length. 
Consequently, by fixing these parameters based on ground-measured data available, 
the complexity of the model was significantly reduced, allowing for a more streamlined 
and focused analysis in both dual and full-polarization modes to simulate the corre-
sponding backscatter intensities. A distinct set of twelve data points was set aside for 
independent validation of the model-derived parameters and the AGB. The biophysical 
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values estimated from the model inversion were then plugged into the allometric 
Equation 1 to calculate the above-ground biomass. The trunk radius retrieved from 
the inversion process is transformed into the more commonly used metric of DBH, 
which is utilized as a key parameter for estimating above-ground biomass. For the full- 
pol scenario, the model generated predictions for the n0 of each pixel, in addition to tree 
height and DBH. Using these predicted n0 values, the total count of the trees in each plot 
was subsequently estimated and then incorporated with the corresponding AGB values 
of each pixel in order to facilitate the estimation of the total AGB per pixel. On the 
contrary, for dual-pol data, the model inversion resulted in the retrieval of only the tree 
height and DBH, while n0 was kept constant. In this case, the AGB was estimated using 
the allometric equation based on the retrieved tree height and DBH. The estimated AGB 
per pixel was further multiplied with an optimal value, representing the total number of 
trees per plot set specifically for distinct vegetation types, to determine the total AGB for 
each pixel. To evaluate the accuracy of the retrieval process, three statistical metrics 
were employed: the coefficient of determination (R2), the root mean square error 
(RMSE), and the mean absolute error (MAE). Finally, spatial maps of AGB were generated 
for both dual and full polarization scenarios of the LS-ASAR data. To streamline the 
computation process during optimization, the SAR images were multi-looked into 30 m 
× 30 m pixel sizes. As a final step in the procedure, areas that were devoid of vegetation 
were masked, ensuring they were exempted from the computation. This comprehensive 
and systematic strategy aids in assessing the efficacy of both dual and full polarization 
data at two distinct frequencies in the estimation of AGB and related biophysical 
attributes from the integrated scattering model.

4. Results

This section explores the findings of the study regarding the utilization of LS-ASAR 
backscatter in dual and full polarizations for estimating above-ground biomass in the 
study area. The investigation provides valuable insights into the performance and poten-
tial of multi-frequency, multi-polarization SAR data in accurately estimating forest AGB.

4.1. General performance of Model inversion

In this subsection, the focus is on assessing the performance of the inverse modeling 
employing the LS-ASAR backscatter (in dual and full polarizations) for retrieving forest 
biophysical parameters. Radiative transfer models, including the dielectric cylinder scatter 
model proposed by Karam and Fung (Karam and Fung 1988) and I2EM surface scatter 
model proposed by Fung and Chen (Fung and Chen 2010), underwent modifications to 
integrate first-order scatter mechanisms from both the ground and trunk layers. For the 
full-pol data inversion, HH/HV/VV combinations were used, while for the dual-pol data 
inversion, HH/HV combinations were used. The parameters retrieved from the inversion of 
the model were plotted against the parameters measured in the field. This research made 
use of 14 sample plots. Out of these, two points were utilized to constrain and set the 
parameters of the forward model, while the remaining twelve points were kept separate 
and used as independent validation data.
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4.1.1. Performance of Model inversion with dual-pol data
This section presents the performance of the model inversion using dual-pol data (HH and 
HV) in S- and L-frequencies. In the forward modeling of the dual-pol case, two parameters 
of the model were fixed: tree count density and vegetation dielectric constant, utilizing two 
ground-measured samples. The inversion of dual-pol data provides the two biophysical 
parameters, DBH and tree height. Figure 5 presents the validation results comparing the 
model-retrieved parameters with ground-truth measurements. The DBH retrieved from the 
S-band dual-pol data exhibited a relatively weak correlation with the field-measured data, 
with an R2 of 0.11, an RMSE of 6.66 cm, and an MAE (%) of 32.63. Similarly, the estimation of 
tree height showed a lower correlation, with an R2 of 0.15, an RMSE of 3.19 m, and an MAE 
(%) of 21.97. For the HH/HV L-band data, the retrieved DBH showed a better correlation 
with the field-measured data, as indicated by an R2 of 0.65, an RMSE of 5.16 cm, and an 
MAE (%) of 26.50. Additionally, the estimation of tree height demonstrated a relatively 
stronger relationship, with an R2 of 0.68, an RMSE of 2.12 m, and an MAE (%) of 15.12.

Figure 5. Validation plots for the retrieved DBH and tree height (a & b) from the model inversion of 
S- band dual-pol data, and validation plots for the retrieved DBH and tree height (c & d) from the 
model inversion of L- band dual-pol data.
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4.1.2. Performance of Model inversion with full-pol data
This section discusses the performance of the model inversion using LS-ASAR full-pol 
data. In fine-tuning the forward modeling for full-pol data, the vegetation dielectric 
constant was optimized. This optimal value is held constant during inversion while the 
free parameters (three in number) are retrieved. The inversion of the full-pol model 
resulted in the retrieval of DBH, tree height, and tree count per pixel. Figure 6 presents 
the validation results comparing the model-retrieved parameters with field measure-
ments. The tree count, retrieved using S-band full-pol data, showed a moderate correla-
tion with the field-measured data, evidenced by an R2 of 0.56, an RMSE of 97.77 trees/ha, 
and an MAE (%) of 27.59. Further, DBH estimation gave an R2 of 0.36, an RMSE of 6.23 cm, 
and an MAE (%) of 32.00. The tree height estimation demonstrated a comparable level of 
correlation, with an R2 of 0.34, an RMSE of 2.44 m, and an MAE (%) of 18.60. On the other 
hand, inverting L-band full-pol data showed much better results. The retrieved tree count 
exhibited a reasonably strong correlation with field-measured data, with an R2 of 0.89, an 
RMSE of 70.90 trees/ha, and an MAE (%) of 26.65. Further, the inversion for DBH estimation 
displayed a stronger correlation, with an R2 of 0.74, an RMSE value of 5.00 cm, and an MAE 
(%) of 25.23. Tree height inversion also demonstrated a stronger correlation with the field 
values, with an R2 of 0.71, an RMSE value of 2.10 m, and an MAE (%) of 14.39.

The comparison of the results obtained from the inversion of different biophysical 
parameters using LS-ASAR data reveals that the L-band full-pol data is most promising in 
terms of correlation with the field data. It exhibited the strongest correlations and 

Figure 6. Validation plots for the retrieved DBH (a), tree height (b), and tree count (c) obtained from 
the model inversion of S- band full polarimetric data, and validation plots for the retrieved DBH (d), 
tree height (e), and tree count (f) obtained from the model inversion of L- band full polarimetric data.
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relatively lower RMSE values for the retrieved tree count, tree height, and DBH. Following 
the full-pol L-band data, the dual-pol L-band data exhibited favorable results, demon-
strating its potential for estimating forest biophysical parameters. Conversely, inverting 
the S-band full-polarized data revealed average correlations with increased RMSE figures. 
Meanwhile, inverting the S-band dual-polarized data led to less robust correlations and 
RMSE values that were notably higher than those in the L-band scenario. Overall, these 
findings highlight the superiority of the L-band full-polarized data as the most effective 
approach for retrieving biophysical parameters, followed by L-band dual-pol data. Please 
note that the P-band case is not evaluated in this study.

4.2. AGB estimation and validation

As mentioned in section 3, for the full-pol case, the model predicted the tree counts for 
each pixel, along with tree height and DBH. Subsequently, these retrieved tree counts 
were multiplied with the corresponding AGB values estimated with the allometric equa-
tion (see section 2.2), enabling the estimation of the total AGB for each pixel. Accurate 
retrieval of the tree count plays a critical role in this process, as it provides vital informa-
tion about the varying tree numbers within each plot and exerts a significant impact on 
the overall accuracy of the AGB estimation. On the other hand, with dual polarimetric 
data, the model had no predictive power for the tree count. Instead, a constant optimal 
value for tree count (as obtained by fine-tuning the forward model) was used in the 
allometric equation to calculate the total above-ground biomass for the respective plots. 
This largely explains the statistically significant difference in the accuracy of the estimated 
AGB between the dual- and full-pol cases.

The geocoded AGB maps prepared for the study area (for both frequencies and for 
both dual- and full-pol configurations) are shown in Figure 7. These maps illustrate the 
spatial distribution of predicted above-ground biomass across the selected study area. To 
ensure accuracy, non-forested areas were masked on the AGB maps, focusing solely on 
forested regions for the analysis. To expedite the optimization process, resampled SAR 
images with a pixel size of 30 m � 30 m were utilized. The AGB map employs a color 
scheme transitioning from yellow to deep blue, indicating increasing AGB values from 0 
to > 200 t/ha.

The study area encompassed sites with diverse levels of biomass, and the predicted 
data reveals a heterogeneous spread of above-ground biomass within the area. The AGB 
map prepared using L-band full-pol data (Figure 7(d)) showed a significant degree of 
variability, followed by the dual-pol L-band data (Figure 7(b)). However, compared to the 
full-pol case, there was a decrease in the extent of variability in the dual-pol case.

In the case of model inversion with the S-band, the majority of pixels were grouped within 
the lower classes of AGB. This distribution is primarily attributed to the fact that the S-band 
data has very little sensitivity towards higher biomass ranges. Comparing Figure 7(c,d) shows 
the significant saturation of the S-band for higher AGB levels (>100 t/ha). This effect is visible 
even in the dual-pol case (Figure 7(a,b)), confirming that it is indeed a frequency-related 
effect. Additionally, when using S-band dual polarization, it was observed that the predicted 
AGB did not surpass the 100–150 t/ha range.

For higher AGB study areas, it may be advantageous to look for L-band dual-pol data 
over even S-band full-pol data, as will be more evident with the subsequent discussions. It 
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is worth noting that the L-band also reaches saturation at higher AGB values, and the 
retrieval accuracy goes down drastically. The predictive reliability starts to diminish 
significantly with L-band data when the biomass exceeds 150 t/ha. Whereas, in the 
S-band, the accuracy starts to decrease earlier, specifically when the biomass measures 
go beyond 100 t/ha. It is noticed that, in areas where the biomass is comparatively low, 
both frequencies provided a relatively high degree of accuracy in predicting AGB.

Figure 7. AGB maps from the scattering model for both S- and L- dual polarimetric data (a & b) and 
S- and L- full polarimetric data (c & d). The regions colored grey in the maps correspond to non- 
forested areas.
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Figure 8 presents the validation of the AGB maps shown in Figure 7 by comparing the 
predicted AGB with the LIDAR-derived and field measured AGB (for all the frequency and 
polarization combinations considered in this paper). These scatter plots display varying 
performances for different frequencies and different polarization combinations. The 
estimation of AGB with S-band dual-pol data turned out to have the weakest correlation 
with the field-measured data, as evidenced by an R2 of 0.49, an RMSE value of 58.31 t/ha, 
and an MAE (%) of 39.73. For L-band dual-pol data, the inversion process exhibited a high 
correlation, with an R2 of 0.83, an RMSE value of 30.66 t/ha, and an MAE (%) of 21.42, 
indicating reasonable accuracy in estimating forest AGB which is in fact better than the 
S-band full-pol case.

When dealing with S-band full-pol data, the results showed a weaker correlation, with 
an R2 of 0.59, a higher RMSE value of 55.07 t/ha, and an MAE (%) of 37.45, suggesting that 
the effectiveness of S-band data for AGB estimation is comparatively limited. Lastly, the 
inversion of L-band full-pol data demonstrated the strongest performance, indicating 

Figure 8. Validation plots for model-predicted AGB against LIDAR-derived and field-measured AGB for 
S- and L-band dual-pol data (a & b) and S- and L-band full-pol data (c & d).
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a robust correlation and higher accuracy in estimating forest biomass (R2 = 0.87, 
RMSE = 20.37 t/ha, and MAE (%) = 14.10) for AGB estimation. Overall, these findings 
highlight the superior performance of the L-band full polarized data in accurately 
estimating above-ground biomass in temperate forests, followed by the L-band dual 
polarized data, the S-band full polarized data, and finally the S-band dual polarized 
data. Table 4 presents an overview of the accuracy assessment.

5. Discussion

The section presents a detailed discussion of the results, comparing them with existing 
research in the field. This comparison enables clear inferences to be made about the 
capabilities and limitations of the scattering model when used with the (dual and full-pol) 
LS-ASAR data in estimating AGB.

Previous investigations (Dobson et al. 1992; Pulliainen, Kurvonen, and Hallikainen  
1999; Way et al. 1994) have revealed that the influence of trunk-ground interactions 
on the overall backscatter at the selected SAR frequencies is expected to be rela-
tively weak. Armed with this knowledge, our approach prioritized the coherent 
addition of backscatter coefficients from direct ground and trunk interactions to 
the total backscatter intensity. The utilization of RT models offers distinct advantages 
over non-parametric models. One notable advantage of RT models is their lower 
dependency on large reference data sets. While non-parametric models heavily 
depend on extensive reference data for efficient performance (Hongliang and 
Shunlin 2003), RT models can operate effectively with a comparatively smaller set 
of reference data. This study aligns with other research works that have leveraged RT 
models for AGB estimation with limited reference data. For instance, Wang and Qi 
(Wang and Qi 2008) successfully employed a first-order RT model to estimate the 
woody biomass of tropical forests using 32 sampling sites. Similarly, Soja et al. (2021) 
employed a canopy scatter model with P-band SAR data to estimate AGB with six 
reference plots. Santoro et al (Santoro et al. 2011). developed a scattering model, 
which is independent of field data, for the interpretation of ENVISAT ASAR C-band 
data aimed at mapping the growing stock volume in boreal forests. A similar 

Table 4. Performance evaluation of the scatter model with dual-pol and full-pol ASAR data at L-and 
S-bands.

Parameter Evaluation Index

Dual-pol Full-pol

S-band L-band S-band L-band

AGB R2 0.49 0.83 0.59 0.87
RMSE (t/ha) 58.31 30.66 55.07 20.37
MAE(%) 39.73 21.42 37.45 14.10

Height R2 0.15 0.68 0.34 0.71
RMSE (m) 3.19 2.12 2.44 2.10
MAE(%) 21.97 15.12 18.60 14.39

DBH R2 0.11 0.65 0.36 0.74
RMSE (cm) 6.66 5.16 6.23 5.00
MAE(%) 32.63 26.50 32.00 25.23

Tree Count R2 - - 0.56 0.89
RMSE (No. of trees/ha) - - 97.77 70.90
MAE(%) - - 27.59 26.65
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technique was also proposed by Cartus et al (Cartus et al. 2011). with ERS-1/2 
tandem coherence, which aimed to map different classes of growing stock volume 
in Northeast China. Compared to empirical models, RT theory-based models exhibit 
greater reproducibility, as they are less reliant on field data (Houborg, Soegaard, and 
Boegh 2007; Quan, He, and Li 2015; Yebra et al. 2013). This characteristic enhances 
the robustness of RT models, making them applicable to a wider range of forested 
regions and vegetation types.

This study used the allometric relationship introduced by Stovall et al (Stovall et al.  
2018). to estimate the above-ground biomass, considering both the trunk DBH and tree 
height within the designated plots. According to the study conducted by Frank et al 
(Frank et al. 2018). incorporating tree height into models can aid in accounting for 
potential differences across various sites. Another study conducted by Lambert et al 
(Lambert, Ung, and Raulier 2005). demonstrated that incorporating tree height mea-
surement in allometric equations, along with DBH, enables more accurate estimations 
of tree volume and reduces the root mean squared error of total tree biomass predic-
tions (by approximately 8% for hardwood species and 25% for softwood species).

The results of this study align with the findings of Tanase et al (Tanase et al. 2014), 
who investigated the impact of employing full pol data versus a dual-polarized system 
for estimating above-ground biomass using parametric and non-parametric models. In 
their study, they reported a slight improvement in estimation accuracy (2%) when 
incorporating all four polarizations. The outcomes of this study are also in line with 
the results reported by Pereira et al (Pereira et al. 2018), where they investigated the 
performance of different polarimetric SAR data configurations in univariate and multi-
variate generalized linear models for AGB estimation. Their study revealed that the most 
accurate and least biased AGB estimates were obtained using fully polarimetric data 
from the PALSAR-1 data, which is an L-band system, surpassing the accuracy achieved 
with single- and dual-pol SAR data. In the present study, the findings are consistent with 
those presented by Khati et al (Khati et al. 2020), who conducted a comprehensive 
assessment of forest biomass estimation using L-band SAR backscatter at the Lenoir 
Landing site. This assessment was carried out using images from the UAVSAR acquired 
in 2019. In their approach, Khati et al. employed the modified Water Cloud Model (WCM) 
for biomass estimation, achieving notable accuracy. The results of their study were 
significant, with an R2 value of 0.76 and an RMSE of 14.13 t/ha. Similarly, Ghosh et al 
(Ghosh et al. 2023). carried out a study at the Lenoir Landing site that employed 
a kernel-based Gaussian process regression (GPR) technique for estimating biomass 
using data from L-band UAVSAR acquired in 2019. The study achieved notable results, 
with an R2 value of 0.73 and an RMSE of 16.50 t/ha. The findings from the current study 
at the Lenoir Landing site, which employed the RT model in combination with LS-ASAR 
and LIDAR data, exhibit alignment with the results of previous research conducted in 
the same region. Uniquely, the present study applies varied polarimetric SAR data 
configurations to radiative transfer modeling, offering an unexplored comprehensive 
evaluation approach. This significantly enhances the understanding of biomass estima-
tion accuracy, positioning the current research as a novel contribution to applying 
diverse SAR configurations for accurate biomass estimation. Table 5 provides 
a comprehensive comparative overview, juxtaposing relevant AGB estimation studies 
with the present study.
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6. Conclusion

The present study explored the use of LS-ASAR backscatter in dual polarization and full 
polarization modes for the estimation of AGB in the study area (the temperate forests 
of the Lenoir landing site in Southwest Alabama, United States of America). In 
a vegetation stand, the predominant share of the AGB resides within the woody 
components. This understanding influenced our decision to adopt a cylinder scattering 
model, where the canopy is conceptualized as a layer of defoliated trunks and 
illustrated as an assortment of dielectric cylinders distributed randomly and possessing 
fixed heights. For the retrieval of forest biophysical parameters, the study integrated 
the dielectric cylinder scatter model with the I2EM surface scatter model. This inte-
grated scattering model was inverted either with the full polarization data (HH/HV/VV) 
or with the dual polarization data (HH/HV). A small portion of the ground truth data 
was utilized to fine-tune the parameters of the forward model, with the rest serving as 
independent validation data. RT models stand out for their robustness and wide 
applicability, as they have less dependence on reference data. The study utilized an 
allometric equation to estimate AGB, which incorporated height, DBH, and tree count. 
The use of full-pol data allowed the estimation of tree counts for each pixel in addition 
to DBH and tree height, facilitating more accurate AGB estimation. The results of AGB 
estimation revealed varying performances for different combinations of frequency and 
polarization. The strongest performance in AGB estimation was noted in the inversion 
of L-band fully polarized data, with a high correlation (R2 = 0.87) and the lowest RMSE 
(20.37 t/ha). The inversion of L-band dual polarized data, S-band fully polarized data, 
and S-band dual polarized data, in that order, showed progressively lower correlations 
and higher RMSE values.

The use of LS-ASAR backscatter data in dual and full polarization, integrated 
with radiative transfer models, presents a viable approach for estimating AGB in 
temperate forest ecosystems. Among the methods studied, the retrieval process 
exhibited superior performance with the L-band full polarized data inversion, 
making it the most effective approach for retrieving biophysical parameters in 
the study area. However, the presence of non-negligible RMSE values implies 
that there is room for further refinement in the model to achieve more accurate 
AGB estimates. The factors contributing to the observed discrepancies between the 
retrieved and measured parameters include variations in forest structure, species 
compositions, terrain characteristics, and data acquisition conditions. Future 
research may seek to extend these findings by optimizing the inversion process 
and investigating the potential of the fusion of different modalities and polariza-
tions. The findings from this research offer important direction for future investiga-
tions and advancements in the field of SAR-based above-ground biomass 
estimation techniques.
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