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Abstract Riparian areas are highly dynamic bio-
geophysical settings with a surge of waste deposition 
predominantly including land-based plastic discards. 
These polymer discards are destined to be the prime 
constitution of marine “plastisphere.” The polymer 
fate is determined by waterbodies, where the chances 
of plastic retention are higher, eventually mediating 
the formation of microplastics (MPs) in years or dec-
ades. Such formed MPs are a potential threat to the 
aqua bio-regime. A systematic investigation of three 
waterbody basin soils (Karamana River, Killiyar, and 
Akkulam-Veli Lake) showed the presence of MPs in 
all the samples analyzed with varying sizes, shapes, 
colors, and compositions. MPs of the shapes flakes, 
fragments, filaments, sheets, foams, and fibers were 
observed with dimensions 0.3–4.7  mm. Most of the 
particles were white in hue (WT), followed by color-
less (CL), light yellow (L.Y), light brown (L.B), 
orange (OR), red (RD), and blue (BL), respectively. 
The polymer communities were identified as high-
density polyethylene (HDPE), low-density polyeth-
ylene (LDPE), polypropylene (PP), polyethylene 
terephthalate (PET), polystyrene (PS), and nylon. 
The highest average MP density was identified in the 
basin of Killiyar (799 ± 0.09 pieces/kg) followed by 

Karamana River (671 ± 3.45 pieces/kg), indicating 
the closeness of the sampling station to the city center 
compared to Akkulam-Veli Lake (486 ± 58.55 pieces/
kg). The majority of the sampling sites belonged to 
the slopy areas and came under the highly urban-
ized land category. A close association was observed 
between particle abundance and urban activity. The 
study foresees possible threats inflicted by MP abun-
dance upon the area-wide hydro-biological system.

Keywords Microplastics · Riparian soils · Polymer 
community · Secondary microplastics · LULC · Slope 
categories

Introduction

Riparian environments are highly susceptible to 
waste disposal and have become the main source of 
riverine and marine plastic pollution (Kumar et  al., 
2023a). Land-based plastic waste found in these sen-
sitive zones is an emerging environmental risk due 
to its potential to inflict ecological as well as human 
welfare. Macroplastics are directly a threat to vari-
ous species of flora and fauna and damage vessels, 
fishing gears, and hydro-mechanical frameworks. It 
impacts the tourism industry, increases the efforts and 
cost of shoreline cleaning, triggers the risk of urban 
flood due to clogging (McIlgorm et  al., 2011; van 
Emmerik & Schwarz, 2020), and causes the breakout 
of the longtime accumulated waste in bulk amounts 
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during unfavorable climatic conditions (Prabhakaran., 
2023). Macroplastic polymers undergo degradation 
physically, photo-chemically, and biologically result-
ing in the formation of micro-sized particles defined 
as “secondary microplastics (MPs)” (Waldman & 
Rillig, 2020) with dimensions less than 5 mm, imply-
ing even higher eco-toxicological impacts. Based on 
previous plastic pollution studies conducted within 
and through various waterbody catchment areas, it 
is evident that plastics and their degraded particles 
are retained in these regions causing serious impacts 
on various environmental compartments and human 
health (Ballerini et al., 2022; Campanale et al., 2020; 
Irfan et al., 2020a; Ryan & Perold, 2021; Srinivasalu 
et al., 2021; van Emmerik et al., 2019a). As per the 
global plastic quantification study conducted by Mei-
jer et al. (2021), of all the plastic waste released into 
the environment, less than 2% of the discarded waste 
ends up in the marine ecosystem. For water bod-
ies such as rivers with greater upstream population, 
increased number of dams, over bridges, and larger 
floodplains, the likelihood of oceanic plastic waste 
emission rates will be comparatively lesser due to the 
higher accumulation rates of the pollutant within and 
across the riverine system (Tasseron et al., 2020; van 
Emmerik et  al., 2022). Exorheic lakes, which drain 

into the oceans, also show higher rates of macro-
polymer stagnation on lake surfaces, burial in bot-
tom sediments, and accumulation on lake shorelines/
beaches (Egessa et al., 2020; Faure et al., 2015). The 
main sources of this plastic waste are urban drainage, 
wastewater runoff, littering, discarded fishing gear, 
or other drainage-ridden wastes (van Emmerik et al., 
2022) which get concentrated into small temporary 
water whirlpools (Faure et  al., 2015). Wind-induced 
surface currents, especially during storms, also trans-
port and deposit substantial amounts of plastic on the 
shorelines of aquatic waterways (Zbyszewski et  al., 
2014). The sources of plastic pollution are depicted in 
the given illustrations (Fig. 1).

The prolonged detainment of the riparian zonal 
plastic litter is mediated predominantly by the veg-
etation type, distribution, and densities within the 
area (Bruge et  al., 2018; Cesarini & Scalici, 2022; 
Martin et al., 2020). The freely floating aquatic veg-
etation such as water hyacinth, Pistia, and larger 
Salvinia trap and mobilize large amounts of plastic 
waste downstream under the influence of wind force 
and hydrodynamics (Schreyers et al., 2021). In other 
scenarios, these macro synthetic polymers shall either 
get transported, dispersed, discharged, and buried in 
the banks/shores/flood plains of waterbodies at low 

Fig. 1  Sources of plastic pollution in riparian zone
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flow rates/lower channel slope or get settled within 
the downstream sediments based on the hydro-
dynamic and sedimentation characteristics of the 
waterbody basins (Egessa et  al., 2020; Faure et  al., 
2015; Haberstroh et al., 2021; Lechthaler et al., 2020; 
van Emmerik & Schwarz, 2020). Wind-induced 
water currents, urban surface runoff, drainage waste 
discharge, and flood events also play equally impor-
tant roles in the dispersion of low-density plastics 
toward the shoreward regions (Bruge et  al., 2018; 
Egessa et  al., 2020; Faure et  al., 2015; Roebroek 
et al., 2021; van Emmerik et al., 2019b). High-density 
polymers (> 1000  kg/m3) sink to the sediment beds 
in the absence of intense water currents. Low-density 
macro-polymer products like bottles and polythene 
bags lose their buoyancy on getting filled with water 
or wrapped by microbial biofilms (Al-Zawaidah 
et  al., 2021; Gabbott et  al., 2020; Lechthaler et  al., 
2020; van Emmerik et  al., 2022). Once the water 
current–mediated buoyant plastic particles reach the 
embayment of marine interlinked water systems, the 
dual action of both these water currents shall deter-
mine the fate of polymer types (van Emmerik et al., 
2022).

Most of the plastic wastes discarded at the banks 
or riparian zones disintegrate into smaller frag-
ments due to physical, chemical, and biological pro-
cesses (Delorme et  al., 2021). Physical degradation 
of plastics involves wave actions, sediment-mediated 
abrasions, and/or digestive segregation by different 
organisms (Barnes et al., 2009; Dawson et al., 2018; 
Mateos-Cárdenas et  al., 2020). Photo-degradation, 
thermal/thermo-oxidative degradation, hydrolysis, 
corrosive chemical or solvent-mediated deterioration, 
and bio-degradation bring about chemical degrada-
tion (van Emmerik et al., 2022). Prolonged exposure 
to direct ultraviolet (UV) radiations and wind-induced 
frictions further ease plastic degradation at consider-
able rates (Andrady, 2011). After the polymer deg-
radation, the resultant MPs get either deposited in 
the bed sediment, transported in the water path, or 
devoured by aquatic biota (Leslie et  al., 2017). The 
MPs entrapped within the sediments get remobilized 
during flood conditions and further carried away 
downstream, eventually reaching the ocean.

MPs with a density marginally greater than water 
and a size range greater than 0.2  mm are likely to 
be retained in soils (Kumar et  al., 2023b; Nizzetto 
et  al., 2016a), forming a direct interaction with soil 

aggregates, affecting their distribution and mobil-
ity within soils (Rillig & Lehmann, 2020). A thor-
ough analysis of the flood-flushed MP fragments 
retrieved from oceans reveals that microsynthetic 
polymer dispersion is least affected by entrapment 
factors when compared to macroplastics (Hurley 
et  al., 2018; Treilles et  al., 2022). In earlier stud-
ies, the plastic fragment types reclaimed from riv-
erine systems mostly included soft, hard, and foams 
(Castro-Jiménez et  al., 2019; Tramoy et  al., 2019; 
van Emmerik et al., 2020). White, transparent, black, 
and colored particles with varied shapes such as fib-
ers, films, fragments, and pellets were reported in the 
water and sediments of Poyang Lake in China (Yuan 
et al., 2019). Samples from Vembanad Lake in Kerala 
showed MPs in shapes such as fibers, foams, films, 
sheets, and fragments with HDPE, LDPE, PP, and PS 
polymer compositions.

The effects imposed by MPs on the aquatic com-
munity have aroused global concerns over the past 
decades. The general impact of MPs on the biotic 
community includes physical harm, toxicity, and even 
death. MPs have the potential to accumulate in the 
food chains and get biomagnified, imposing possible 
threats to human health. In addition, they can change 
the physical and chemical nature of aquatic ecosys-
tems, affecting nutrient cycling and altering the struc-
ture and function of these ecosystems. The eco-tox-
icological effects of MPs are influenced by polymer 
type, shape, and size (Rillig & Lehmann, 2020).

The use of catchment areas as dump yards is per-
ceived as their limited accessibility and visibility, 
which prompt the local residents and industries to 
discard the generated waste. Moreover, the lack of 
accessibility to the banks, channels, and sediments 
bed of water bodies make reclamation difficult, even-
tually causing the extensive spread and piling up of 
pollutants, resulting in pollution disasters in riparian 
areas (Domínguez et al., 2016). The spatial distribu-
tion and portability of MP pollutants in catchment 
regions are controlled by the population density, pre-
cipitation patterns, and the slope of the area (Nizzetto 
et  al., 2016a; Scheurer & Bigalke, 2018; Yonkos 
et  al., 2014; Zhou et  al., 2021). However, currently, 
sufficient data is unavailable on MP accumulation 
pattern, constitution, and factors influencing its distri-
bution within the soil.

In this paper, various aspects of the riparian soil 
MPs retrieved from the banks of three water body 
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basins including two rivers and a lake water system 
connected to a marine environment are discussed. 
The study area includes polluted downstream por-
tions of the Karamana River, Killiyar (a tributary 
of the Karamana River), and Akkulam-Veli Lake 
within Thiruvananthapuram Corporation, near the 
immensely urbanized and populated city, infamous 
for its waste generation patterns over the years. Both 
Karamana River and Akkulam-Veli Lake are notori-
ous for their pollution status. Akkulam-Veli Lake, in 
addition to being a tourist destination, is a wetland 
system with fertile land with agricultural practices. 
A total of 24 sampling sites were identified along the 
water body basins for the purpose of soil MP esti-
mation. The paper focuses on MPs with dimensions 
greater than 250 µm for the convenience of the study. 
Furthermore, an investigation of the influence of 
slope and land use class on the intensity of MP con-
tamination was also done. This study is the first of its 
kind to characterize the spatial distribution of MPs 
with contributing factors in riparian soils of Thiru-
vananthapuram Corporation on a vast scale.

Materials and methods

Study site and sampling scheme

The basins of three water bodies were considered 
for this study which include Karamana River, Kil-
liyar, and Akkulam-Veli Lake of Kerala, India. The 
total area selected for the study includes 39 wards of 
Thiruvananthapuram Corporation, which is 68.3  km2 
lying in between the latitudes 9°34ʹ48ʺ to 9°0ʹ0ʺ N 
and longitudes of 70°18ʹ14ʺ to 71°37ʹ40.8ʺ E. The 
sampling sites were fixed equidistant after visualiz-
ing the area in the Google Earth Platform and by field 
investigation of basin dumpsites.

Akkulam-Veli Lake is the oldest tourist destina-
tion with a tourist village and several other tourist 
attractions. It is situated in the north-western outskirts 
of Thiruvananthapuram District along the south-west 
coast of India. The lake covers an area of 0.76  km2, 
situated between 8°31ʹ14ʺ and 8°31ʹ52ʺ North lati-
tudes and 76°53ʹ12ʺ and 76°54ʹ6ʺ East longitudes. 
Akkulam-Veli Lake is a combination of two lakes, 
Akkulam and Veli, separated partially by a bund run-
ning across its length. Of these, the Veli Lake opens 
to the Arabian Sea a few times a year (10–14  days 

repeated 6 to 8 times a year) depending upon the 
influx of land drainage received through inlet streams 
and canals. For the rest of the time, it remains closed 
by a 150-m sandbar. The opening of the Veli Lake 
into the marine system during the dynamic drainage 
influx period facilitates the settled pollutants within 
the lake to get drained into the ocean. Lately, the 
lake has been exposed to sewage and domestic waste 
as a consequence of population explosion and urban 
clustering.

Karamana River is the second longest river flow-
ing through Thiruvananthapuram City with a length 
of 68  km. The coordinates of the river basin lie 
between latitudes 8°27ʹ36ʺ N to 8°38ʹ24ʺ N and 
longitudes 76°54ʹ0ʺ to 77°15ʹ0ʺ E. The river origi-
nates in the Chemmunji Peak and the Adurai Malai, 
located at the southern tip of the  Western Ghats 
at  Agastyar Koodam and is formed by the conver-
gence of several small streams like the Vaiyapadi Aar, 
Attai Aar, Thodai Aar, and the Kavi Aar (Sukanya & 
Sabu, 2020). From the origins, the river flows west-
ward and merges with the Arabian Sea at Panathura 
near  Kovalam. The river is named after a locality 
in Thiruvananthapuram City, known as Karamana, 
through which it flows. The watershed basin is mostly 
forested and the mainland consists of mixed dry land 
crops such as coconut, plantain, rice, tapioca, areca 
nut, and pepper (keralapages.org). The river has 
several bridges and dams across its length. It is the 
main source of surface water which fulfills the water 
requirement of the city and plays an important role 
in groundwater replenishment. TS canal, otherwise 
known as Parvathy Puthanar, running parallel to the 
coast holds untreated sewage effluents that rush into 
the river, polluting its lower streams (Sukanya & 
Sabu, 2020).

The Killiyar (latitudes 8°40ʹ30ʺ N, 8°27ʹ0ʺ N and 
longitudes 76°57ʹ E, 77°2ʹ0ʺ E) is a ground-fed or 
spring-fed rivulet forming the largest tributary of the 
Karamana, which covers a distance of 24 km (Jyothy-
lakshmi and Abraham, 2020). Killiyar starts from 
Nedumangad, flows through Thiruvananthapuram 
City, and joins the Karmana River at Pallathukadavu. 
The tributary has five stream dams to regulate the 
water flow. A portion of the water deviates toward the 
Kochar channel and from there to the Padmatheer-
tham pond. The ultimate destination of the river is 
the Arabian Sea through the Pozhikkara  estuary. A 
part of the river runs parallel to the sea, known to be 
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Edayar. Like the Karamana River, Killiyar has also 
turned into a dumping site, where the waste materials 
from hospitals, factories, markets, households, city 
drainage, and garbage runoff are piled up. The major 
source of MP pollutants in the river is single-use plas-
tics from households and the marketplaces. Several 
news reports have been published on the contamina-
tion of Akkulam-Veli Lake, Karamana River, and its 
tributary, Killiyar basins, with plastic waste. These 

factors necessitate the selection of this area for the 
current study.

The sampling scheme for the study involves soil 
sampling at 24 riparian sites along the basins of Kara-
mana River, Killiyar, and Akkulam-Veli Lake dur-
ing the month of March 2022. The sampling sites are 
given in Fig.  2. At each sampling site, a composite 
soil sample consisting of 15 soil cores (30 cm diame-
ter and 10 cm depth) was collected from the areas that 

Fig. 2  Study area map with geographic position of sampling sites, important places, and features
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were 0.5–1 m above the water level and at least 0.5 m 
away from the bank of the waterbody. The sampling 
method used was a modified version of the NOAA 
(National Oceanic and Atmospheric Administration) 
Technical Memorandum (Masura et  al., 2015), with 
reference to Rafique et  al. (2020) and Sruthy and 
Ramasamy (2017). A total of 24 basin soil samples 
were collected from the study area.

MP extraction from soil

The separation method for MP extraction from the soil 
is detailed in this section. Soil samples weighing 100 g 
were placed overnight in a hot air oven in the laboratory 
at about 60 °C to remove the excessive moisture content 
of the soil. The dry-weighed samples were then preserved 
in petri dishes and covered with aluminum foil to guard 
against aero-dynamic MP contamination. The dried sam-
ples were then transferred to a 500-mL beaker and stirred 
thoroughly with a previously prepared solution containing 
equal amounts of NaCl and  ZnCl2. The mixture was kept 
covered and undisturbed for 24  h.  ZnCl2 solution was 
used specifically for the separation of high-density poly-
mers. Three sieves were used for the separation process 
with pore sizes 4.7, 1, and 0.3 mm. The floating debris 
in the supernatant was sieved through the sieve stack and 
the final fluid was collected for further filtration using a 
Whatman 0.45-µm-pore-size cellulose membrane fil-
ter with a vacuum pump–connected filtration unit. The 
other three levels of sieved debris including > 4.7, 1, and 
0.3 mm were collected in glass petri dishes and covered 
properly. Larger particles like stones, plant roots, wood 
chips, degraded leaves, and plastic particles greater than 
5 mm were removed manually from the sieves. Smaller 
particles were separated using fine-tipped brushes. The 
samples that remained after sieving were subjected to 
density separation, and the whole process was repeated 
three to four times to retrieve maximum plastic particles 
from the sample. Except for 0.3-mm-sized microparti-
cles, all other filtered debris was dried in a hot-air oven 
at 50–60℃ for visually analyzing MPs. Particles with 
0.3-mm size were subjected to organic matter diges-
tion using 5 mL of 30%  H2O2, 20 mL of ferrous sulfate 
solution, 6 g of NaCl (NOAA Technical Memorandum: 
Masura et al., 2015), and 30 mL of  ZnCl2 solution. The 
digested sample was then subjected to the density fraction 
method using a centrifugation unit at 4000 g for 5 min 
after manually shaking the solution. Finally, the super-
natant with suspended MPs was collected and analyzed 

using a binocular microscope as per Klein et al. (2015) for 
morphological analysis. LabRAM HR Evolution Raman 
microscope was used to analyze the polymer composition 
of the identified plastic particles. A flow chart of the sam-
pling scheme is given in Fig. 3.

Contamination reduction measures followed in the 
laboratory

In the laboratory, precautions were taken to avoid poten-
tial background contamination. Nitrile gloves and labo-
ratory coats made of cotton fabric were worn during the 
whole process to avoid synthetic fiber contamination. 
Before usage, all the prepared solutions, the controls, and 
the distilled water collected were filtered through cel-
lulose membrane filters with pore size 0.45 µm to avoid 
any means of cross-contamination. The results shown by 
the blank clearly indicated the absence of contamination 
while conducting the extraction procedure. The experi-
ment was repeated to check the accuracy of the results. 
After filtration, filter membranes were placed in clean peri 
dishes for microscopic examination (Yaun et al., 2019).

MP categorization based on size shape, color, and 
polymer type

MPs were identified and categorized based on the visible 
characteristics, i.e., size, shape, and color. On the basis of 
shape, the particles were classified into flakes, fragments, 
filaments, fibers, sheets, and forms. The size-wise classi-
fication was done with dimensions > 4.75 mm, 4.75 mm, 
1  mm, and 300  µm (0.3  mm). Classification based on 
color categorized the particles into white, colorless, red, 
blue, light yellow, and light brown colored. The hot-nee-
dle testing method was performed to confirm whether the 
identified particles were plastics or not and plastic parti-
cles showed a distinct melting while non-plastics burnt 
into ashes on heating (De Witte et al., 2014).

Calculations

Moisture content
To assess the moisture content of the samples, a specific 
quantity of the sample (100 g) was taken in terms of dry 
soil using the below formula (Rafique et al., 2020):

S
w
=

S
d

M
c
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where Sw = weight of wet sample taken for analysis in 
grams, Sd = weight of dry sample required in grams, 
and Mc = sample moisture content in percentage.

Concentration of MPs

The final concentrations of MPs were calculated in 
MPs per kilogram using another formula:

where Cm = number of confirmed MPs observed in 
the sample.

MP abundance

The abundance of MPs in the soil samples was calcu-
lated by Gray et al. (2018), Xiong et al. (2018), and 
Irfan et al. (2020b):

MP concentration = C
m
× 10

Statistical analysis, spatial mapping, land use land 
cover mapping, and slope and buffer analysis

Descriptive statistical analysis and graphical repre-
sentations (i.e., graphs and chart preparation) were 
done using MS Excel 2016. ArcGIS 10.4.1 was used 
for chart representations and for creating spatial dis-
tribution maps. Pearson correlation analysis was per-
formed to analyze the relation between slope and MP 
abundance, where correlation coefficient (r), level 
of significance (p-value < 0.05), degrees of freedom 
(df), and t statistics (t) were estimated using RStudio 
statistical package (R 4.3.0 Console). Land use land 
cover classification was performed using Landsat OLI 
Imagery (9 bands) downloaded from USGS Earth 
Explorer during the month of March 2022. The data 
used had only less than 10% cloud cover. Erdas Imag-
ine 2015 along with ArcGIS 10.4 and Google Earth 
Pro were used for the overall classification process. 

Fig. 3  Scheme of the study

Microplastic abundance =
Number of MPs oberserved per sample

Size of sample
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K-Mean clustering algorithm was used as an unsu-
pervised learning process as this method is the best 
applicable in visual data exploration. The total area 
was divided into six categories: (1) built-up; (2) farm-
land; (3) open scrub; (4) surplus land; (5) trees; (6) 
waterbody.

The slope (%) of the area was estimated from the 
SRTM 1 Arc-Second Global DEM with 30-m reso-
lution (year of availability: 2014), acquired from the 
USGS Earth Explorer website. The voids within the 
data were removed using the DEM fill tool in the 
hydrology tool set to remove negative values. The 
slope calculator in the Surface toolset within Spatial 
Analyst tools was used for the generation of the slope 
layer. The slope was grouped into six classes includ-
ing 0–0.5 (depression to level), 0.5–2 (very gently 
sloping), 2–5 (gently sloping), 5–9 (moderately slop-
ing), 9–15 (strongly sloping), 15–30 (steeply slop-
ing), and > 30 (very steeply sloping) (Soil Classifica-
tion Working Group, 1998).

Result and discussion

MP pollution status in environmental compartments

The study showed that all the samples collected had 
MPs with an average concentration of 652 ± 54.25 
items/kg, ranging from 310 to 1170 items/kg. There 
was a total of 15,650 MP particles with a size range 
of 0.3 to 4.7  mm (Table  1). The results are in con-
sensus with studies conducted in Switzerland with 
an average amount of < 593 items/kg (Scheurer & 
Bigalke, 2018) and Germany, with an average amount 
of 1000–24,000 items/kg (Bläsing & Amelung, 
2018). A study conducted in the agricultural soils 
of two different regions of China showed an average 
concentration of 18,760 items/kg (He et  al., 2018) 
and 65.75 ± 13.92 items/kg in subsoils (Liu et  al., 
2018) and 84.75 ± 13.22 items/kg in top soils. Appli-
cation of sewage sludge for fertilizer was observed 
as the reason for the higher concentrations, whereas 
a lower concentration of MPs in Loess plateau farm-
land soils of China (< 0.54  mg/kg) represented the 
reduced influence of urban communal activities at the 
vicinity of the region (Zhang et al., 2018).

In the study, despite significant anthropogenic 
activities and the potential for multiple MP sources, 
the observed concentration of MPs remained 

relatively low. This may be attributed to the insuffi-
cient maturation of plastic waste deposits in the area, 
not having aged sufficiently to transform into MPs 
as their degradation typically requires an extended 
period. The size range of the identified MPs in the 
study ranges from 0.3 mm (300 µm) to 4.75 mm. A 
comparison with previous studies on MP content 
within soil and sediment compartments is provided in 
Table 2. The highest MP concentration was recorded 
in  KR3 soil (1170 ± 2.89 MP/kg), followed by  KL2 
(1120 ± 2.89 MP/kg), while the lowest concentration 
was found in the soil sample from  AK8 (310 ± 5.77 
MP/kg) (Table 1, Fig. 4). A visual representation of 
MP concentrations across various sampling locations 
is illustrated in Fig. 5.

Sample sites exhibiting higher MP concentrations 
(specifically  KR3,  KL2, and  KL4 with MP concentra-
tion exceeding 1000 items/kg) were associated with 
the built-up land cover class as indicated by pixel 
value (Fig.  6). The LULC classification reflects the 
proximity of sampling points to the populated city 
areas (Table  3) and highlights the impact of human 
interventions on riparian soils.

Sampling stations  KR3,  KL2, and  KL4, charac-
terized by higher MP contamination, were situated 
in areas with gentle slopes (2–5%) (see Table 4). In 
contrast, the  AK8 sampling station, exhibiting the 
lowest MP counts, is associated with the open scrub 
land cover class and features a moderate slope range 
(5–9%). Refer to Fig.  7 for the map illustrating the 
sampling locations and their respective slope ranges.

Killiyar soil samples exhibited the highest MP 
count among the three waterbody basins, register-
ing 6390 items/kg, with an average abundance of 
0.79875 ± 0.09 and a mean MP concentration of 
81.25 items/kg (Table 5, Fig.  8). The observation is 
justified by its proximity to the city center, where the 
shore area is densely settled and fully urbanized. In 
contrast, the landscape pattern of the Karamana River 
shows a small tree-covered gap between the river and 
the adjacent urban area, providing a narrow buffer 
zone that shields the river bank from urban commu-
nity interventions (Fig. 6).

Corradini et al. (2019) reported MP count in Chil-
ean agricultural fields ranging from 0.6 to 10.4 items/g 
(equivalent to 600–10,400 items/kg). A similar MP 
count was exhibited by the  KL3 sample site (980 ± 3.46 
MP/kg), located near Kerala Agricultural University’s 
agricultural land. Intensive MP pollution at agricultural 
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lands is mostly attributed to plastic mulching; solid 
waste disposal; runoff from residential, commer-
cial, and construction areas; use of sewage sludge as 
manure; and irrigation with water from contaminated 
urban water channels (Mahon et al., 2017; Majewsky 
et al., 2016; Nizzetto et al., 2016b; Willén et al., 2017; 
Li et al., 2018; Zhang and Liu, 2018).

Though there is only a limited reference available 
on MP contamination in riverine basin soils, a simi-
lar study was found to be conducted by Zhou et  al. 
(2021) on the Yangtze River basin, revealing higher 
subsoil MP concentrations (4005 ± 2472 items/kg) 
than surface soil concentrations ((3748 ± 2301 items/
kg). This suggests the submerging property of plas-
tic particles within the soil. The study identified cor-
relations between MP concentration and factors such 
as population density, precipitation, and elevation. 
Deeper soils exhibited higher MP concentrations 
due to the continuous deposition of washed-out soil 
over less mobile deposits, facilitating soil microbial, 
physico-chemical, and earth pressure factors in the 
degradation of inorganic polymer waste. Over time, 
macro-polymers become less flexible and gradually 
disintegrate into MPs in the topsoil too. Smaller par-
ticles are easily transferred to subsoils via soil pores 
(Hurley et  al., 2018; Lazar et  al., 2010). Su et  al. 
(2021) found a total of 3352 MPs in the soil and 
groundwater samples of Huangshui and Dagu River 
basins in China. Most of the samples collected for 
their study were from agricultural lands and their MP 
contamination status reflects the human interventions 
in the area.

In the current study, most of the Killiyar basin 
sampling sites were dumping sites of relatively recent 
origin. Despite their age, these sites exhibited higher 
MP contamination due to the quantity and qual-
ity of dumped waste. Several smaller waste dumps 
of the city, found at junctions, roadsides, and unat-
tended properties, contribute to MP formation, which 
reaches sewage drainage systems, rivers, and other 
water bodies. Shore-deposited macroplastics, along 
with MPs, undergo further degradation facilitated by 
detritivores in organic carbon-rich basin soils (Chae 
& An, 2018; Rillig et  al., 2017; da Costa Araujo & 
Malafaia, 2021; Le Guen et  al., 2020). Despite the 
higher MP concentrations in the Killiyar River basin 
(6390 ± 0.09 MP/kg), the values were comparatively 
lower than those reported in non-river basin soil 
studies by He et al. (2018) and Rafique et al. (2020). H
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Drains and roadsides receive urban sewage with sig-
nificant MP quantities, including tire wear particles, 
wind-transferred MPs, and degraded/burned macro-
plastic litter (Knight et al., 2020; Rafique et al., 2020; 
Su et  al., 2020; Wong et  al., 2020). Water-flushed 
MPs reach the rivers and lakes, where they either set-
tle in sediments or get transported to shores through 
water currents.

The lowest MP concentrations were found in 
Akkulam-Veli Lake basin soils, notably at station 
 AV8 (310 ± 5.77 MP/kg) near Veli parking grounds, 
emphasizing its cleanliness as a tourist destination. 
Despite this, on-shore regions reported higher macro-
plastic contamination. Rapid urbanization around 
the lake, marked by new constructions (apartments, 
restaurants, malls (Mall of Travancore and LULU 
mall), hospitals (PRS, Lords) tourist destinations, and 
commercial buildings), contributes to water quality 
issues. Plastic waste accumulates in the water hya-
cinth (Pontederia crassipes) population in the lake 
which gets transported to shores by wind or water 
flow, or gets submerged in sediments along with 
aquatic plant debris. The highest MP concentration 
in the Akkulam-Veli Lake basin was exhibited by the 
 AV1 site (780 ± 1.73 MP/kg), situated too close to the 

waterbody, with a steep slope at the lake entry point, 
promoting waste drainage into the lake from upper 
lands. Sloping terrain and rock particles increase fric-
tion-induced abrasions on the waste, generating more 
trapped MPs in drained soil particles.

Various reports highlighted the MP contamina-
tion in lake and riverine sediments (Fischer et  al., 
2016; Irfan et al., 2020b; Ram & Kumar, 2020; Rod-
rigues et  al., 2018; Sarkar et  al., 2019; Srinivasalu 
et  al., 2021; Sruthy & Ramasamy, 2017; Vaughan 
et  al., 2017; Yaun et  al., 2019). For instance, the 
UK’s Edgbaston Lake sediments showed a MP 
count of 25–30 items/100 g of dry sample (250–300 
items/kg), while Bolsena and Chuisi Lake sediments 
in Italy reported a count of 112 and 234 items/
kg, respectively (Fischer et  al., 2016).). A study 
by Vaughan et  al. (2017) highlights the biofoul-
ing properties of macro-polymers, which sinks the 
debris into deeper sediments and gradually break 
down into MPs. Lake characteristics, wind patterns, 
precipitation, tide range, and land-based effluent 
discharge can influence MP concentrations (Fis-
cher et  al., 2016). Rawal Lake sediments in Paki-
stan exhibited a concentration of 104 items/kg and 
showed the influence of population density, waste 

Fig. 4  MP abundance per kg of basin soil samples
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littering, recreation, and tourism (Fischer et  al., 
2016). Veeranam Lake (Tamil Nadu) and Vembanad 
Lake (Kerala) sediments analyzed for MP pollution 
that showed ranges of 92–604 items/kg of dry sedi-
ment sample and 96–496 particles/m2, respectively 
(Srinivasalu et  al., 2021; Sruthy & Ramasamy, 
2017), are comparable to the present study.

Increased precipitation, flow rates, and drain-
age input from Kollidan and Vellar rivers contrib-
uted to Veeranam Lake’s MP pollution (Srinivasalu 
et  al., 2021). Vembanad Lake contamination was 
due to the discharges from urban bypassing rivers, 
streams, and canals (Mohan et al., 2014; Ramasamy 
et  al., 2012; Sruthy & Ramasamy, 2017). This 
study represents one of the earliest MP analyses in 
Kerala. MP concentrations in lake sediments from 
the UK, Central Italy, Pakistan, Tamil Nadu, and 

Kerala aligned closely with the results of the current 
study (1170–310 items/kg) (Table 1 and 2). Similar 
results were also shown by the Antuã River in Por-
tugal (100–629 MPs/kg), Liangfeng River in China 
(6950–149,350 MPs/kg), River Ganga in India 
(107.57 items/kg–409.86 items/kg), and Sabarmati 
River in Ahmedabad, India (47.1 mg—75 to 212 µm; 
4  mg—212  µm to 4  mm) (Table  2). The high MP 
concentration in Liangfeng River was due to its con-
tamination with effluent from the upstream wastewa-
ter treatment plant (Xia et  al., 2021). River Ganga 
faces significant MP pollution from industrial cities 
and effluent points (Sarkar et al., 2019). MP content 
in the Sabarmati River results from human interven-
tions, effluent emissions, water system stagnancy, 
and urban release (Ram & Kumar, 2020). Antuã 
River in Portugal exhibits spatial and temporal 

Fig. 5  MP abundance shown in the sampling sites
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variations in MP concentrations, linked to precipita-
tion patterns, river hydrodynamics, and proximity to 
urbanized areas (Rodrigues et al., 2018).

Micro-polymer color, shape, composition, and sizes

This study assessed three visual characteristics of 
the particles: color, shape, and size. The seven hues 

identified for the study were white, transparent, blue, 
orange, red, light yellow, and light brown. Shapes 
included fibers, fragments, and filaments (Table  5, 
Fig. 9). The distribution of MP shapes in the sample 
is depicted in the map (Fig. 10).

The sizes analyzed in the study were 0.3, 1, and 
4.7  mm. The MP particles appeared as sharp, dull 
colored or transparent, either smoothened over the 

Fig. 6  Land use land cover classification of the study area for the year 2022
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edges or degrading, filmy, glossy, flat and thick-
ened, elongated and fiber-like, spongy, filamentous, 
and mud stained. Among six shapes, fragments 
were most abundant (31.12%), followed by flakes 
(23.77%), sheets (17.76%), foams (14.63%), fila-
ments (9.39%), and fibers (3.32%) within the basin 
soil samples (Table  5). Fragment percentage was 
highest in Killiyar (41.78%), followed by Karamana 
(32.77%). The order in abundance of shape was frag-
ments > flakes > sheets > foams > filaments > fibers. 
Akkulam-Veli Lake basin showed a different order, 
with foam as the most abundant one (31.88%), fol-
lowed by flakes (25.96%), sheets (20.31%), frag-
ments (11.31%), filaments (7.97%), and fibers 
(2.57%). Fibers were the least found shape in all 
basins. The highest number of fibers (3.76%) were 
in the Killiyar basin soil and the least (2.57%) was 
in the Akkulam-Veli basin.  KR3 had the most frag-
ments and  AK4 had the most foams. Macro-polymer 
type can influence the shape of MP particles formed 
during degradation and the size and shape of thus 
formed MPs can determine the intensity of impact 
imposed on the living system.

According to the 2016–2017 Extended Producer 
Responsibility (EPR) report jointly prepared by Tha-
nal and Green Army for Thiruvananthapuram Corpo-
ration, the urban center with nearly 250,000 house-
holds generates 4242 tons of plastic waste annually 
(Kumar, 2018). Despite the 47 Resources Recovery 
Centers (RRCs), the city’s waste management system 
faces challenges with improperly managed RRCs, 
potentially losing plastic litter during heavy rain or 
wind events (Jambeck et al., 2015). Commonly gener-
ated wastes include single- and double-layered single-
use plastic products such as LDPE-graded curd and 
milk covers, ready-made batter packages, disposable 
glasses, plastic plates, oil covers, snacks and food 
packages, cosmetic, sanitary, and healthcare prod-
ucts, tubes and bottles, sachets; polypropene-graded 
laminated sheets, wire meshes, medicine strips, and 
HDPE-graded bottles, containers, and boxes. River 
contamination is aggravated due to the proximity to 
urban settlements, driven by a lack of awareness or 
non-compliance with authorities’ mandates and rules, 
leading residential and industrial communities to 
improperly discard plastic waste.

Table 3  Area and sampling 
sites under each LULC 
class

LULC land use land cover, 
LU land use

SL no LULC type Area under each LU 
type  (km2)

Samples under the LU type

1 Built up 54.070862 KR2,  KR3,  KR4,  KR5,  KR6,  KR7,  KR8, 
 KL2,  KL3,  KL4,  KL6,  KL7,  KL8,  AV3, 
 AV4,  AV6

2 Farmland 0.760322 –
3 Open scrub 5.822289 AV8

4 Surplus land 0.792548 –
5 Trees 1.880003 KR1,  AV5,  AV7

6 Waterbody 4.89936 KL1,  KL5,  AV1,  AV2

Table 4  Slope range, slope type, area under slope, and sampling stations in each slope range of study area

KR Karamana, KL Killiyar, AV Akkulam-Veli

SL no Slope range (%) Slope type Area under slope 
 (km2)

Samples under the slope

1 0–0.5 Nearly level 0.412099 –
2 0.5–2 Very gently sloping 6.385728 KL1,  KL5

3 2–5 Gently sloping 25.5606 KR2,  KR3, KL4, KL2,  KL3,  KL4,  KL7, 
 KL8,  AV2,  AV3,  AV6

4 5–9 Moderately sloping 20.20988 KR4,  KR5,  KR6,  KR7,  KR8,  KL6,  AV5,  AV8

5 9–15 Strongly sloping 10.17462 KR1,  AV1,  AV4,  AV7

6 15–30 Steeply sloping 4.964604 –
7  > 30 Very steeply sloping 0.320499 –
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This study identifies micro-fragments as the pre-
dominant shape type in the area, consistent with 
findings in previous studies (Mehdinia et  al., 2020; 
Urban-Malinga et  al., 2020; Wang et  al., 2018a, 
2018b; Zhou et  al., 2021), reflecting their high fre-
quency in various environments. The spatial distri-
bution of MP shapes is influenced by local activities, 
industrial processes, runoff from streets and drains, 
wind action, and distance from sources (Ogonowski 

et  al., 2018). Micro-fragments, primarily resulting 
from the degradation of macro and meso plastics, are 
categorized as “secondary microplastics” (secondary 
MPs) (Wang et al., 2018b). Fragmentation or degra-
dation reduces MP size, increasing its bioavailability 
to organisms and potential biomagnification (Cole 
et al., 2011; Sruthy & Ramasamy, 2017). Micro-frag-
ments originate from rigid plastic items like bottles, 
containers, toothbrushes, bottle caps, buckets, and 

Fig. 7  Slope ranges of the study area
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plastic utensils. Machado de Souza et al., 2018) noted 
higher persistence of micro-fragments within soil 
aggregates, particularly in sub-surface soils.

Reports indicate synthetic microfibers as a signifi-
cant MP type, following micro-fragments (Lots et al., 
2017; Mahon et al., 2017). Mostly composed of poly-
ester, nylon, and polyethylene, microfibers originate 
from clothing, household items, sewage sludge, and 
industrial activities (Zhou et al., 2021; Brahney et al., 
2020; Li et  al., 2019; Liu et  al., 2019). Sources of 
these MPs comprise laundry wastewater, municipal 
sewages, tire wear particles, and suspended air par-
ticles (Anthony et al., 2011; Hernandez et al., 2017; 
Wang et  al., 2018a; Leads & Weinstein, 2019; Liu 
et  al., 2019). This study found microfibers to be the 
least abundant shape (Table 5), possibly due to their 
low density allowing easy wind or water transport or 

methodological challenges owing to their impercep-
tibility to the naked eye (Lots et  al., 2017; Mahon 
et al., 2017).

Flakes, the second most prevalent MP form in 
the study area (Table 5), were mainly transparent or 
colorless. Turner et al. (2022) noted paint flakes as the 
most abundant MP type in marine ecosystems, often 
mistaken by marine organisms as food source. The 
observed flakes likely originated from the deteriora-
tion of traditional Kerala snack packages (Achappam 
and Murukku packages), grain packages, polypropyl-
ene grocery and ration store bags, plastic labels, PE 
tarpaulins, and stressed or burned cosmetic plastic 
tubes or containers.

Micro sheets, the fourth most abundant type in the 
study area (Table 5), are primarily colored and rarely 
transparent. They result from the degradation of 

Table 5  Average abundance and shape of MPs in Karamana, Killiyar, and Akkulam-Veli

Avg. abun. average abundance

Sampling area Total MPs/kg Mean MPs Avg. abun Particle shape

Flakes Fragments Filaments Sheets Foams Fibers

KR 537 65.75 0.67125 1280 1760 600 1180 370 180
KL 639 81.25 0.79875 1430 2670 560 810 680 240
AV 389 48.625 0.48625 1010 440 310 790 1240 100
Total 3720 4870 1470 2780 2290 520
Percentage (%) 234.7 311.2 93.9 177.6 146.3 33.2

Fig. 8  Abundance propor-
tion of MPs in Karamana, 
Killiyar, and Akkulam-Veli
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macro particles, likely from sheet-type plastics (PP, 
PE) or discarded plastic bags (Gomiero et al., 2019; 
Su et al., 2021; Wang et al., 2020; Zheng et al., 2019). 
The study also identified micro-filament particles 
derived from various plastic materials such as ropes 
(nylon, polypropylene, polyester), fishing nets, school 
bags, handbags, laptop bags (nylon, PET), and plastic 
sacks (HDPE, PP).

Micro-foams, which result from progressive 
macroplastic degradation, appear as irregular or 
round-shaped particles smaller than other MP shapes 
(Li et al., 2021). These are widely used as insulators 
in various production industries, including construc-
tion equipment, electronics, automobiles, and by 
packaging companies (Egessa et al., 2020; Wen et al., 
2018). Foams are primarily thermocol made of poly-
styrene (PS) or expanded polystyrene (EPS); LDPE 
foams, commonly used for electronic gadget protec-
tion, were also detected. Magnified images of MPs 
with different shapes are provided in Fig.  11. MP 
beads were not found in the study area, clearly indi-
cating the predominance of secondary MPs (Sruthy & 
Ramasamy, 2017; Wessel et al., 2016; Yonkos et al., 

2014), consistent with findings in the sediments of 
Vembanad Lake (Sruthy & Ramasamy, 2017).

White was the most abundant particle color (661 
particles, 42.24%), followed by colorless (519 parti-
cles, 33.16%), light yellow (185 particles, 11.82%), 
light brown (76 particles, 4.86%), orange (61 particles 
items, 3.90%), red (38, 2.43%), and blue (25, 1.60%) 
(Table 1, Fig. 12).

The majority of white particles were found the 
site Killiyar (272, 42.57% of colored particles) fol-
lowed by Karamana (220, 40.97% of colored par-
ticles) and Akkulam-Veli (169, 43.44% of the total 
colored particles). Overall, 96% of MPs were white, 
92% were colorless, 87.5% were light yellow, and a 
few were blue (58.33%).  KL2 and  AV1 reported the 
highest number of white particles. Color diversity 
in MPs indicates the diversity of pollution sources 
(Qu et  al., 2018; Li et  al., 2021). The possibility of 
particle intake by aquatic organisms is higher due to 
its resemblance to prey in color and shape (Shaw & 
Day, 1994), especially the white particles are highly 
mistaken for C. auratus, a plankton species (Yuan 
et al., 2019). In the study, the majority of the samples 

Fig. 9  Abundance of various shapes of MPs in Karamana, Killiyar, and Akkulam-Veli
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were identified with white, colorless, and colored 
particles with no polychromatic or black-hued ones. 
Li et al. (2021) reported an abundance of white and 
transparent MPs in their study. The main sources of 
white MPs could be white plastic carry bags and dis-
colored polychromatic particles exposed to weath-
ering, heat, light, and bio-activity (Galafassi et  al., 
2019; Liu et  al., 2020; Waldschlaeger et  al., 2020; 
Zhu et al., 2019b). Plastic sheets used for packaging 
food, snacks, and sweets (mostly PP and PE) may 
contribute to transparent particles. The abundance 
of MPs by hue is white (WT) > colorless (CL) > light 
yellow (L.Y) > light brown (L.B) > orange (OR) > red 
(RD) > blue (BL). The color type distribution of MPs 
is shown in Fig. 13.

Six polymer types were identified in the study 
(Table  1 and Fig.  14), with LDPE being the most 
prevalent (571 particles, 36.49% of the total). In the 

Karamana basin, 209 LDPE particles were found 
(38.92% of the total in Karamana), 250 particles in 
Killiyar (39.12% of the total in Killiyar), and 112 
LDPE particles were in Akkulam-Veli basin (28.79% 
of the total in Akkulam-Veli).  KL4 recorded the high-
est LDPE count (52 items, 9.11%), while  AK8 had 
the least (3 particles, 0.53%). The overall abundance 
order was LDPE > PP > PS > PET > PES > HDPE > 
PES. The second most common polymer type was 
PP (460 items, 29.39%), followed by PS (208 items, 
13.29%), PET (206 items, 13.16%), and HDPE (68 
items, 3.32%). Almost all sites had LDPE, PP, and 
PET microparticles, 92% had PES, 87.5% had HDPE, 
and only 75% had polyester particles. Previous stud-
ies also reported PE and PP abundance in similar 
areas (Sruthy & Ramasamy, 2017; Pan et  al., 2019; 
Hamid Shahul et  al., 2018; Liu et  al., 2018; Yaun 
et  al., 2019; Irfan et  al., 2020b). Irfan et  al. (2020a) 

Fig. 10  Shape proportion of MPs in the study area
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identified a correlation between MP type and poten-
tial plastic products.

The distribution of MPs coming under various pol-
ymer types depicted in the map is shown in Fig. 15.

Sruthy and Ramasamy (2017) found results similar 
to Vembanad Lake sediments, where LDPE was the 
most abundant polymer (26–91%), followed by PS 
and PP. Polyethylene (PE) is widely used due to its 
versatile applications (Noik et al., 2015; Ballent et al., 
2016). PS serves various purposes, including thermal 
insulation and packaging appliances, while PP is used 
for items like carpets, fishing nets, plastic bags, con-
tainers, lids, and wrappers (Allahvaisi, 2012; Vianello 
et  al., 2013). A study in the Chishui River basin, in 
China, reported polymer types such as PE, PP, PS, 
and PVC, reflecting the widespread use of low-qual-
ity, affordable, and daily-use plastic products (Köfteci 
et al., 2014; Li et al., 2021).

Regarding the size range observed in the current 
study, approximately 58% (901 MPs) of identified 
micro-polymers are of the size 300 µm, while 28.63% 
(448 MPs) were of size 1 mm and 13.80% (216 MPs) 

were of 4.7 mm in dimension (Table 1 and Fig. 16). 
The proportion of particles of varying sizes are repre-
sented in the map is shown in Fig. 17.

Killiyar River basin had the highest count of 
300-µm-sized MPs (357 MPS, 55.87% of the total 
in Killiyar), notably at sites  KL3 and  KL4. Fol-
lowing this, the Karamana basin reported 305 
MPs (300  µm) and Akkulam-Veli had 239 MPs 
(300  µm). Mesoplastics (> 5  mm to < 2  cm) were 
observed mostly within the Karamana basin (40 
particles), tailed by Killiyar (36 particles) and 
Akkulam-Veli (32 particles). MPs pose a significant 
risk to aquatic and terrestrial life due to their larger 
surface area, facilitating the absorption of toxic pol-
lutants (Devriese et  al., 2017). Their small sizes, 
resembling zooplankton, increase their likelihood 
of being mistaken as prey by aquatic organisms 
(Cole et al., 2011). Numerous studies have explored 
MPs with size ranging both less than and greater 
than 100  µm (Zhang et  al., 2016; Liu et  al., 2018; 
Scheurer & Bigalke, 2018; Zhang et  al., 2018; 
Zhang & Liu, 2018; Zhou et al., 2021).

Fig. 11  Binocular microscopic images of MPs in basin soil samples of the study area. a Flake, b fragment, c filament, d sheet, e 
foam, f fiber
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Statistical findings

The Pearson correlation (Sedgwick, 2012) analysis 
performed between the variables, slope and particle 
abundance, exhibited a statistically irrelevant weak 
negative correlation, where the values were esti-
mated as r (correlation coefficient) =  − 0.3724274, 
t =  − 1.8822, df (degrees of freedom) = 22, and p-value 
(level of Significance) = 0.0731. Here the p-value was 
greater than 0.05, hence the correlation is statistically 
insignificant. The correlation plot between slope per-
cent and MP concentration is represented in Fig. 18.

LULC classification for the year 2022

A LULC map of the study area was prepared for 
the year 2022. The land use classes and the esti-
mated area under different classes were as follows: 
built-up, 54.07  km2 (79.25%); open scrub, 5.82  km2 
(8.53%); waterbody, 4.98  km2 (7.18%); trees, 1.88 
 km2 (2.76%); surplus land, 0.79  km2 (1.16%); farm 
land, 0.76  km2 (1.11%) (Table 3, Figs. 6 and 19).

The study area, covering 68.3  km2, is predomi-
nantly characterized by built-up land, reflecting 
urbanization and increased human activities. The 
built-up class includes settlements, roads, and man-
made structures. Urban highlands contribute to 
surface runoff and non-segregated waste disposal, 
influencing plastic pollution in basin areas. With 
only 2.76% tree coverage, the area indicates inten-
sive urban development, leading to soil erosion and 
increased mobilization of MPs. Farmlands (1.11% of 
the total area) may also contribute to plastic pollution, 
as observed by Liu et al. (2018) in suburban vegetable 
fields. The proximity of site  KL3 to farmland suggests 
its potential MP pollution (Liu et al., 2018).

Slope ranges

The slope of an area describes the relief of the land, 
where the rate of surface runoff is directly proportional 
to the steepness of the slope, thus mediating higher 
rates of soil erosion. In this study, the area estimated 
under each slope percentage category were 0–0.5: 0.61 

Fig. 12  Abundance of various colored MPs in soil of sampling sites
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 km2 (0.89%); 0.5–2: 6.40  km2 (9.37); 2–5: 25.56  km2 
(37.42%); 5–9: 20.21  km2 (29.59%); 9–15: 10.24  km2 
(14.99%); 15–30: 4.96  km2 (7.26%); and > 30: 0.32  km2 
(0.47%). The slope ranges, area, and sampling points 
under each slope class are given in Table 4, Fig. 7, and 
Fig.  20. Slope promotes the transportation of pollut-
ants from higher-elevation terrains to low-lying eleva-
tions, especially to the water body basins. Kerala has 
a prominent monsoon season and the amount of storm 
runoff along with other factors determines the pollut-
ant transport. This flow is mostly influenced by the ter-
rain features, where slope is one of them. Slope range 
5–9 (moderate slope) covers most of the study area 
(20.21  km2) and slope class > 30 (very steep slope) 
covers the least area (0.32  km2). Most of the sampling 
sites belonged to the 2–5 range, which is gently sloping 

areas. Sampling sites  KR1,  AV1,  AV4, and  AV7 belong 
to strongly sloping areas, whereas  KL1 and  KL5 belong 
to very gently sloping areas.

To know the impacts posed by MPs, it is essen-
tial to understand its transport mechanisms. From 
soil compartments, MPs are transferred to other 
environments such as water and air, through various 
transmission mechanisms (Guo et al., 2020). Other 
than the percolation and infiltration mechanisms 
(less effective transport of MPs), the alternative wet 
and dry cycles (due to evapotranspiration) of soil 
mediate the MP penetration (O’Connor et al., 2019). 
The horizontal and vertical movement (through soil 
pores) of these MPs can lead to their distribution in 
groundwater and freshwater resources at alarming 
rates (Rillig, 2012; Silva et al., 2018).

Fig. 13  Color proportion of MPs shown in sampling sites
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Fig. 14  Polymer types of 
MPs in the basin soil of 
sampling sites

Fig. 15  Polymer-type proportion of MPs in sampling sites
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MPs act as a framework to form soil aggregates 
enhancing water-holding capacities but reducing 
microbial activities (Machado de Souza et al., 2018). 
Once they get into the environment, micro-polymers 
become bioavailable, thus entering the food chain 
(Rillig, 2012; Silva et  al., 2018). Ingested by organ-
isms, MPs can accumulate in the gut, causing inflam-
mation, weakening, and even death (He et al., 2018). 
Higher MP concentrations elevate earthworm mortal-
ity rates (Horton et al., 2017; Lwanga et al., 2017). Qi 
et  al. (2018) found that modern biodegradable plas-
tics showed more negative impacts on wheat plants 
than polyethylene MPs. Polystyrene particles can 
easily accumulate in edible plants (Zhu et al., 2019a). 
Rapid degradation of biodegradable plastics increases 
soil toxicity risk (Raza, 2019). These plastics absorb 
organic pollutants, posing a bioavailability threat to 
higher trophic levels (Hüffer et al., 2019).

Proper knowledge of the frequently used dispos-
able plastics is essential to control MP pollution 
(Addamo et al., 2017; Ferreira, 2014). Without strict 
regulations and lifestyle changes, current plastic con-
sumption rates may cause irreversible environmental 
damage (Rafique et  al., 2020). The present levels of 
soil MPs in the study area can be harmful to terres-
trial and aquatic biota, but the intensity of harm is 
unknown because no risk assessment was performed 

here. Robust legislation and regular monitoring are 
essential to curb plastic waste production and its 
impacts. This study presents initial evidence of MP 
pollution in the basins of three key water bodies in 
Thiruvananthapuram, the capital city of Kerala, influ-
enced by anthropogenic activities. Further in-depth 
studies are recommended to explore MP sources, spa-
tio-temporal variations, distribution influencing fac-
tors, and its eco-toxicological impacts in the region.

Conclusion

Karamana, Killiyar, and Akkulam-Veli are three sig-
nificant aquatic ecosystems of Thiruvananthapuram 
City, Kerala, India, which are confronting the 
immense risk of pollution due to frequently evolving 
urban practices, landscape, and population expansion. 
Thiruvananthapuram City, one of the fastest grow-
ing and urbanizing cities of Kerala, has undergone a 
major transformation in recent years due to projects 
such as Vizhinjam International Transshipment Sea-
port, Rail and Road projects, IT-based solution pro-
jects, and Digital Science Parks. Notably, the city’s 
transformation has intensified plastic deposition and 
pollution rates in the basin areas, with multiple estab-
lishments and sources contributing significantly to the 

Fig. 16  Size-based abun-
dance of MPs in the basin 
soil of sampling sites
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Fig. 17  Size proportion of MPs in sampling sites in accordance with particle abundance

Fig. 18  Correlation 
between slope (%) and MP 
concentrations/kg of soil
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addition of easily perishable single-use plastics. With 
subsequent exposures to various environmental stress-
ors, these synthetic macro-polymers can degrade into 
smaller MPs. The current study unveils the concentra-
tion of MPs in the three waterbody basins of Thiru-
vananthapuram Corporation, Kerala, India, reveal-
ing a range from 310 ± 5.77 to 1170 ± 2.89 items/kg. 
Further investigation exposes variation among the MP 
concentrations of Karamana, Killiyar, and Akkulam-
Veli basin soils. Remarkably, the majority of MPs, 
characterized by a size of ~ 300 μm, can cause a higher 
risk of bioaccumulation as well as groundwater con-
tamination through vertical transport. Diversity and 
abundance among the shape, color, and polymer type 
of MPs is an indication of the various anthropogenic 

sources of soil MP pollution. Overall, in the study, the 
abundant MP shape, color, and polymer type identi-
fied were fragments, white, and LDPE, respectively. 
Rainy seasons are expected to worsen contamination, 
although it is hectic and tedious, emphasizing the 
need for temporal variation assessment of MP distri-
butions in soils. This research emphasizes the impor-
tance of discerning and eliminating frequently used 
plastics as an initial step of MP mitigation measures. 
Comprehensive measures, including national or state 
action plans, stringent laws, eco-friendly alternatives, 
awareness initiatives, and robust recycling practices 
are essential to mitigate plastic production, usage, and 
disposal, safeguarding ecosystems from MP pollu-
tion’s detrimental effects.

Fig. 19  Area proportion of 
land use land cover classes 
in the study area (year 
2022)

Fig. 20  Area proportion of 
slope classes in the study 
area
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