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ABSTRACT

Remote sensing offers opportunities for mapping forest biomass
at a lower cost, faster speed and at a wider scale than field measurements.
Aboveground biomass is estimated using remote sensing data acquired
over a broad electromagnetic wavelength range from visible to microwave
region. The use of remote sensing data to estimate forest aboveground
biomass is of great importance for understanding terrestrial carbon
dynamics and making forest management policies. The integration of
biophysical characteristics of vegetation with remote sensing datasets
enables the quantification of biomass stocks across extensive spatial
scales. Tropical forests, being the most carbon-rich and structurally
complex ecosystems, tend to cause the optical data to saturate quickly
when interacting with them. Active remote sensing technologies like
SAR and LiDAR present alternative methods for retrieving tree and
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canopy height and estimating aboveground biomass. These technologies
can surpass the limitations inherent in optical remote sensing data. By
combining these methods, remote sensing serves as a powerful tool for
extending field plot-based inventories to a regional level, thus offering a
comprehensive understanding of forest biomass.Stateoftheart approaches
have demonstrated the potential for accurate and spatially explicit
biomass mapping. These methodologies, supported by machine learning,
data fusion, and advanced validation techniques provide a robust
framework for solving biomass estimation problems.

Keywords: Remote sensing; forest; height; vegetation indices; LiDAR

INTRODUCTION

The biomass is the mass of living biological organisms in a given
area or ecosystem at a given time. The Intergovernmental Panel on
Climate Change (IPCC) has listed five terrestrial ecosystem carbon pools
involving biomass: above-ground biomass, below-ground biomass, litter,
woody debris and soil organic matter. Of these five, above-ground
biomass is the most visible, dominant, dynamic and important pool of
the terrestrial ecosystem, constituting around 30% of the total terrestrial
ecosystem carbon pool (Eggleston et al. 2006).Above Ground Biomass
(AGB) is all living biomass above the soil including stem, stump,
branches, bark, seeds and foliage (Seibel, 2005). It is measured in units
of tons of carbon per unit area by oven drying the total mass of organic
living plant matter. Forest aboveground biomass is one of the critical
parameters for assessing the productivity and health status of forest
ecosystems.

Forest aboveground biomass is mainly estimated either by field
measurements or by remote sensing methods and this chapter specifically
attempts to provide a comprehensive review of the same. An advanced
search of scholarly literature in Scopus, covers journal papers, books
and conference papers. The search within article title, abstract and
keywords of ‘forest’, and ‘biomass’ and ‘remote sensing’ reveals 3598
published documents are related to remote sensing of forest biomass
from 1983 to 2022. The increasing number of published documents is
connected to the growing interest of the science in studying the biomass
of forests (https://www.scopus.com/).
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Figure 1. The number of documents on remote sensing of forest biomass
published in the last 40 years (https://www.scopus.com/)

2. Traditional methods of biomass estimation

Traditional methods of biomass estimation include direct and
indirect sampling methods (Murali et al., 2005). The first method is
destructive sampling, which involves the complete harvesting of
vegetation in plots and subsequent extrapolation to a unit area of hectare
(Klinge et al., 1975). The second method was developed based on the
functional relationship that approximates the biomass of the tree
component or the total biomass of single trees according to an easily
measured variable - diameter at breast height (DBH) or height (Chave et
al., 2005). AGB for a specific tree can be expressed as a function of
DBH, tree height (H), and/or wood density (S). For a small forest stand,
the AGB calculation is more accurate when based on actual field
measurements. Biomass estimation equations, also known as allometric
equations or regression models, are used to estimate the biomass or
volume of aboveground tree components based on DBH and height data.
These equations are derived based on measured values of tree weight
related to its DBH and height from sample trees. Using biomass equations
is a common and cost-effective method to estimate biomass of tree species
present in a forest or plantation(Kebede & Soromessa, 2018).
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One notable allometric equation in this domain is the Chave et
al. (2014) equation, designed specifically for estimating the aboveground
biomass of tropical trees. This equation takes the form Y = b

1
D2H, with

Y representing aboveground biomass in kilograms, D as the diameter at
breast height in centimetres, H denoting total tree height in meters, and
b

1
 serving as a species and environment-dependent scaling factor.

Given here is the allometric equation as detailed by Chave et al.
(2014),

Where, ñ = wood density; D = diameter at breast height; and

H = height of the tree.

Once the allometric equations are derived, non-destructive
methods can be followed to determine the aboveground biomass. AGB
values   are converted to carbon by multiplying by a factor of 0.47. It is
possible to determine Belowground biomass (BGB) also by multiplying
AGB by a factor of 0.26 based on the root-to-shoot ratio relationship
(Ravindranath and Ostwald 2008).

3. Remote sensing for aboveground biomass (AGB) estimation

In remote sensing, the sensors are not in direct physical contact
with objects or events being observed. The process of acquiring
information about earth surface features, from orbiting satellite is known
as satellite remote sensing. Its unique characteristics for data acquisition,
large coverage and digital format, make it a primary data source for
large scale biomass estimation (Lu et al., 2012). A variety of optical
passive multispectral and hyperspectral images, Synthetic Aperture Radar
(SAR) and Light Detection and Ranging (LiDAR) data are now available
for forest biomass studies. Optical sensor data have various spatial,
spectral, radiometric, and temporal resolutions. Optical datasets are
classified as fine resolution (below 10 m), medium resolution (10-100
m) and coarse resolution. Medium and coarse resolution datasets are
useful in discriminating largely differing biomass classes. Different types
of optical sensor data, such as Landsat, SPOT, Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER), China–Brazil
Earth Resources Satellite program (CBERS), QuickBird, Moderate
Resolution Imaging Spectroradiometer (MODIS), and Advanced Very
High Resolution Radiometer (AVHRR) can be used for biomass
estimation (Lu et al., 2012).
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Remote sensing systems relying on optical data (visible and
infrared) are further limited in the tropics by cloud cover, but newer
technologies, such as radar systems, can penetrate clouds and provide
data day and night (Asner, 2001). Year-to-year changes in biomass are
quite small, about two orders of magnitude smaller than the biomass
pool, unlike year-to-year changes in greenness, which can vary 5 – 10%
relatively to the seasonal average due to climatic variability (Rosenqvist
et al., 2003). The forest carbon stock can be indirectly estimated by
using statistical relationships between vegetation indices and ground-
based measurements. But this method tends to underestimate carbon
stocks in tropical forests where optical satellites are less effective due to
dense canopy closure and has been unsuccessful in generating
transferable relationships (Waring et al., 1995). Nonetheless, optical
remote sensing systems are operational at the global scale and some
satellite systems (Landsat and AVHRR) provide a globally consistent
record for the last 30 years. Optical sensor data are suitable for the
retrieval of horizontal vegetation structures such as vegetation types and
canopy cover, but it is not suitable for estimation of vertical vegetation
structures such as canopy height, which is one of critical parameters for
biomass estimation.

Airborne LiDAR is known for its precise biomass estimation
but is costly. It can measure vegetation’s three-dimensional structure,
distinguishing it from traditional sensors, and has been used in both
airborne and satellite systems. Although Airborne Laser Scanning (ALS)
offers accurate data in certain zones, its high cost makes it impractical
for larger areas. The only globally available satellite system, ICESat’s
GLAS, has limitations such as a large footprint and terrain sensitivity.
Missions like ICESat-2, launched in 2017, and the Global Ecosystem
Dynamics Investigation (GEDI) in 2019, aim to overcome these
limitations by providing smaller footprints and detailed 3D mapping
capabilities. Since no LiDAR mission is currently operational, SAR
sensors are anticipated to be the next best solution to provide accurate
biomass estimates (Patenaude et al., 1995).

SAR sensors are capable of day-and-night imaging, penetrating
clouds and vegetation, obtaining information on the internal structure of
forests, and is unaffected by meteorological conditions and sunlight
levels. SAR sensitivity to AGB changes with wavelength, affecting the
penetration and scattering of microwave signals in the canopy. The
microwaves interact with objects that are the same size or larger than its
wavelength, leaving smaller objects without influencing the backscatter.
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So the longer-wavelength SAR signals can penetrate through leaves and
branches in the forest’s upper canopy, providing more details about
substantial woody parts such as stems and large branches. As these larger
components constitute the majority of above-ground biomass in forests,
longer-wavelength signals are more suitable for AGB estimation. Many
studies have shown correlations between SAR backscatter and AGB at
various frequencies, with L-band cross-polarization (L-HV) found to be
the best option for low-biomass forests. Earlier research revealed rapid
saturation in high biomass forests, with C- & S- bands saturating below
50 t/ha, and L-, P-bands at or below 100 t/ha and 200 t/ha of biomass,
respectively (Le Toan et al., 1992; Imhoff, 1995; Luckman et al., 1997;
Ningthoujam et al., 2017; Schlund & Davidson, 2018).

3.1. Remote sensing approaches for biomass estimation

Measuring forest biomass at a regional scale using field methods
is not feasible because it requires enormous resources and consumes too
much time. Remote sensing systems, both optical and active sensors,
have proven to be an effective alternative for measuring and monitoring
forest biomass at different scales and landscape areas. Studies have
implemented deterministic modelling and stochastic modelling, to this
effect. Deterministic modelling was to interpolate point information using
similarities between measured points (inverse distance weighted (IDW)
interpolation), and fitting a smoothing curve along the measured points
(polynomial interpolation). In stochastic modelling, ordinary kriging
(OK) was employed using parameters derived from semivariograms
(Joseph et al., 2010). Aboveground biomass (AGB) can be estimated
using linear regression (simple linear regression, multiple linear
regression), geostatistical techniques and/or by employing machine
learning algorithms. There are mainly three approaches for AGB
estimation using remote sensing data, i.e., direct remote sensing approach,
stratify & multiply approach, and combine & assign approach.

In the direct remote sensing approach, inputs are field measurements,
spectral vegetation indices or backscatter values from remote sensing
data. Dependent variable is biomass.

Direct remote sensing approach for biomass estimation includes
both regression models that have been widely used in the past few decades
and machine learning techniques that have rapidly developed recently.
It is important to effectively employ suitable techniques to extract
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variables for biomass estimation modeling. Many techniques, such as
vegetation indices, image transform algorithms (e.g., principal component
analysis (PCA)), minimum noise fraction transform and tasseled cap
transform, texture measures, and spectral mixture analysis, which have
been used to produce new variables from optical multispectral data (Lu,
2006). Remote sensing provides valuable inputs, such as land cover maps,
Leaf Area Index (LAI), phenology, stand age, forest structure, and an
estimate of the net and gross primary productivity (Abbas et al. 2020).
Vegetation indices, particularly NDVI, are good indicators of leaf area
index (LAI), and are positively correlated with biomass and productivity.
Many studies report significant positive relationship between vegetation
indices and above ground biomass (Zheng et al., 2004). Regression
models are applied between spectral reflectance or vegetation indices
and field inventory data to estimate above ground biomass (Lu et al.,
2004).

Regression model-based methodologies consist of three major
steps: biomass estimation based on fieldwork, establishment of regression
model between field biomass and satellite information of corresponding
pixels, and the use of regression models to generate a biomass image
with the spatial prediction (Pizaña et al. 2016). Like regression models,
nonparametric algorithms are based on the use of different sensor data,
for example, spectral, radar, and LiDAR using many of these models in
the forest attributes estimation. They are a framework for creating
complex nonlinear biomass models based on the use of remote sensing
variables. Recent AGB mapping research in forest landscapes uses diverse
predictor data fusion and advanced machine learning models (Fararoda
et al. 2021; Behera et al. 2023). The study by Behera et al. (2023)
concluded that combinations of texture and spectral variables derived
from Sentinel-2 optical imagery along with physical variables are found
effective in AGB mapping.Common nonparametric algorithms include
k-nearest neighbor (k-NN), artificial neural network (ANN), random
forest, support vector machine (SVM), naïve bayes and maximum entropy
(Max Ent).

In the stratify & multiply approach, forest plots are stratified in
to different forest cover & density classes. For each class, total biomass
is estimated as the average of plot biomass x Area.
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The study by Reddy et al. (2016) characterized carbon in
aboveground biomass at 5 km grid level in Indian forests using remote
sensing, historical archives and field inventory data over eight decades.
The study has highlighted the differences in forest canopy density and
carbon in forest biomass across India using stratify and multiply approach
(Reddy et al. 2016).

The combine & assign approach is another method for mapping
biomass with remote sensing. It combines satellite and other spatial data
with field biomass data to assign biomass values to each pixel. Combine
& assign approach uses several parameters to relate to plot biomass at
multi-level stratification using data mining approaches. The random forest
regression framework for AGB estimation can be used with both direct
remote sensing and combine & assign approach. Potential variables
generally used in a biomass estimation procedure are presented in table 1.

Table 1. Potential variables used in a biomass estimation
procedure (Lu et al. 2016)

The advantage of Synthetic Aperture Radar (SAR) is that the
signal is less prone to saturation with AGB than optical reflectance. Not
all SAR bands are equally suitable: SAR backscatter in the P and L
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bands has a much stronger correlation with forest AGB than the C and X
bands. The L-band has proven particularly valuable for AGB estimation
(Tian et al. 2012). The combination of spectral responses and image
textures improves the performance of biomass estimation. Estimating
forest Above Ground Biomass (AGB) from SAR backscatter utilizes a
variety of methods, classified into three primary groups by Santoro et
al., 2018: empirical regression models, non-parametric models, and semi-
empirical or physically-based models. Empirical models, such as linear
models, link AGB with SAR backscatter but may lead to under- or
overestimation of AGB. Non-parametric models use algorithms to learn
from data, but optimal performance needs substantial training data, often
a limitation for large-scale mapping. Physically-based models describe
forest backscattered intensity with increased reproducibility by
considering scattering mechanisms within the forest, expressed as a
function of structural properties and microwave interactions (Sainuddin
et al., 2021).

One of the most promising techniques in active remote sensing
is airborne laser scanning (ALS). LiDAR (Light Detection and Ranging)
has revolutionized the study of forest structure by providing simultaneous
high-resolution information on three-dimensional (3D) canopy height
(stand height), vertical canopy structure, and elevation. A typical lidar
sensor emits pulsed light waves into the surrounding environmentThese
pulses bounce off surrounding objects and return to the sensor.The sensor
uses the time it took for each pulse to return to the sensor to calculate the
distance it travelled. Repeating this process millions of times per second
creates a precise, real-time 3D map of the environment. The study of
Singhal et al. (2021) destructively measured 12 trees for their carbon
stock value and the same was estimated using Terrestrial Laser Scanning
technique, local allometric equations and global allometric equations.
The carbon content estimates from terrestrial Laser Scanning method
(26.01% RMSE relative to mean) were consistently closer to destructive
measurements as compared to local allometric equations (42.58%-
101.88% RMSE relative to mean) and global allometric equations
(38.8%-50.69% RMSE relative to mean). 

From Field to Map: An Approach to Estimating Above-Ground
Biomass Integrating Remote Sensing and GIS

Estimating forest biomass using remote sensing techniques and
Geographic Information System (GIS) involves a multi-step process that
combines satellite data, field measurements, and spatial analysis.
Combining field data, remote sensing and GIS offers a comprehensive
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approach to biomass estimation. Here is a general outline of the steps
involved in estimating biomass:

1. Data collection and preparation: Measure individual plant parameters
(e.g., diameter, height) and collect biomass samples from a
representative sample of the population. Select appropriate remote
sensing data based on your study area, objectives and available
sensors. Preferably obtain high-resolution satellite imagery with
relevant spectral bands (e.g., optical, near-infrared, and radar) that
cover the study area. Prepare the remote sensing data by correcting
for atmospheric effects, radiometric calibration, and geometric
correction to ensure consistent data.

2. Biomass estimation models: Develop or select appropriate biomass
estimation models. Common models include allometric equations,
regression models, and machine learning algorithms. For allometric
equations, derive relationships between field-measured parameters
and biomass. These equations can be species-specific or generalized.

3. Calibration and regression:

Ground-based data, such as tree diameter and height measurements,
species identification, and plot-level biomass sampling, contribute
to the calibration of remote sensing-derived models. Create a dataset
that includes field-measured biomass, spectral indices from satellite
imagery, and other relevant variables. Apply the calibrated model to
the satellite-derived spectral indices to estimate biomass across the
entire study area. Another remote sensing-based method is to conduct
spatial interpolation techniques (e.g., kriging, inverse distance
weighting) to generate continuous biomass maps from discrete field
measurements. Utilize airborne or spaceborne lidar data to assess
canopy height and vertical structure.

4. Model validation: Validate the accuracy of the remote sensing-based
biomass estimates using an independent dataset of ground truth that
were not used for model calibration. This step helps ensure the
accuracy and reliability of the model. Calculate statistical metrics
such as RMSE (Root Mean Square Error) and R-squared to assess
the model’s performance.

5. Biomass estimation: Once you have a validated model, apply it to
the entire remote sensing data set to estimate biomass in the study
area. The model converts remote sensing data values   into biomass
estimates.
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6. Fusion of data: To improve the accuracy, combine field data with
various remote sensing data types, including spectral, spatial, and
structural data from satellites, UAV, and ground-based sensors.
Integrating multiple data sources can improve the accuracy of
biomass estimation.

7. Interpretation: Interpret biomass estimates in the context of your
study objectives and the ecological conditions of the study area.

8. Integration with GIS: Import the biomass maps into GIS software to
overlay them with other spatial data layers, such as land cover, roads,
and administrative boundaries. Conduct spatial analyses to identify
biomass distribution patterns, hotspots, and correlations with
environmental factors.

9. Reporting: Create maps and visualizations that depict the spatial
distribution of forest biomass. Use colour symbols to represent
biomass levels. Generate reports summarizing the methodology,
accuracy assessment, and spatial patterns.

Challenges and future directions

Despite remarkable advancements, challenges persist. One of
the challenges in biomass estimation lies in capturing spatial variability
accurately. Integrating data from diverse sensors, addressing scale
disparities, and accounting for complex forest structures are ongoing
concerns. It has underscored the current challenges, particularly in areas
with higher biomass where optical remote sensing data lack accuracy
due to saturation effects. While many studies have concentrated on live
woody forest biomass, dead biomass and soil carbon remain less explored.
Modern biomass estimation techniques harness the power of machine
learning algorithms to fuse remote sensing data with ground-based
observations. Random Forest, Support Vector Machines, and neural
networks are being employed to develop predictive models that consider
intricate relationships between various remote sensing parameters and
biomass. These techniques also enable the integration of data from
multiple sources, resulting in more robust and accurate estimations. The
validation of biomass estimates remains critical for evaluating model
performance. Advanced validation techniques include ground-truthing
through high-precision LiDAR scans and direct field measurements.
Moreover, state-of-the-art approaches have placed emphasis on
quantifying uncertainty in biomass estimates, enabling researchers and
policymakers to make informed decisions based on the reliability of the
data. The continuous refinement of algorithms, better integration of multi-
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source data, and improved uncertainty quantification are key areas for
future research.

CONCLUSIONS

This chapter has provided an overview of the existing methods
used to estimate Above-Ground Biomass (AGB) through both passive
and active space-borne remote sensing technologies. The utility of various
sensors to overcome the challenges is emerging, with techniques like
PolInSAR and TomoSAR showing promising results at smaller scales.
With technological advancement, uncertainties in AGB estimation are
anticipated to decrease. The new generation of sensors, such as LiDAR
(ICESat-2, GEDI, MOLI) and SAR (NISAR, BIOMASS, ALOS-2),
promises unprecedented accuracy and resolution in AGB estimation.
The integration of data from multiple sources, driven by varying accuracy
levels, also highlights the potential for a multi-sensor approach to
transcend the limitations of single sensor data. Further innovation and
collaboration will pave the way for more refined biomass estimation
techniques.However, regular monitoring and better integration methods
are still needed to fully capture the spatial patterns of biomass
accumulation or loss.
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