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PRELIMINARY

1.PROBABILITY:

Probability can be defined as the ratio of the number of favorable out-
comes to the total number of outcomes of an event. For an experiment having
'n’ number of outcomes, the number of favorable outcomes can be denoted
by x.

Probability(Event) = Favorable Outcomes/Total Outcomes = x/n

2.PROBABILITY SPACE:

Probability space is the total nuinber of possible ways the class of out-
comes the probability of which one is attempting to determine, could possi-
bly occur. For example, one can define a probability space which models the
throwing of a die.

3.0UTCOME:

In probability theory, an cutcome is a possible result of an experiment
or trial. Each possible outcome of a particular experiment is unique, and
different outcomes are mutually exclusive (only one outcome will occur on
cach trial of the experiment).

4.MEAN:

Mean is the arithmetical average of a set of values.Mean is the average of
the given numbers and is calenlated by dividing the sum of given numbers
by the total number of numbers. Mean = (Sum of all the observations/Total
number of observations)

5. VARIANCE:
Variance is a statistical measuremoent used to determine how far each

number is from the mean and from every other number in the set.Variance
is the expected value of the squarcd variation of a randomn variable from its



mean value.

6.RANDOM VARIABLE:

A random variable is a variable whose valuc is unknown or a function that
assigns values to cach of an experiment’s outcomes. A random variable can
be either discrete i.e., having specific values. (eg: The number of cars sold
by a car dealer in one month) or continuous l.e., any value in a continuous
range. (eg: The amount of water in a 12-ounce bottle)

7.BINARY RANDOM VARIABLE:

A Dbinary variable is a variable that has two possible outcomes.For exam-
ple, a binary random variable can be used to represent the probability of a
coin [lip resulting in heads.

8. NORMAL DISTRIBUTION:

A continuous variable X having the symmetrical, bell shaped distribu-
tion is called a Normal Random Variable.The normal probability distribu-
tion (Gaussian distribution) is a continuous distribution which is regarded
by many as the most significant probability distribution in statistics partic-
ularly in the field of statistical inference.

A continuous random variable X is said to follow Normal distribution if
it's pdf is

1
a2r
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9.POISSON DISTRIBUTION:

A random variable X is said o follow the Poisson distribution il it’s pdf
i5
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= 0, elsewhere

10.ARRIVAL RATE & INTER ARRIVAL TIME:

The arrival rate is the number of arrivals per unit of time. The inter
arrival time is the time between each arrival into the system and the next

Arrival rate = 1/Inter arrival time
11, EXPONENTIAL DISTRIBUTION:

In Probability theory and statistics, the exponential distribution is a con-
tinuous probability distribution that often concerns the amount of time until
some specific event happens. It is a process in which events happen con-
tinuously and independently at a constant average rate. The exponential
distribution has the key property of being memoryless. The exponential
random variable can be cither more small values or fewer larger variables.

The continuous random variable, say X is said to have an exponential
distribution, if it has the following probability density function:

de ™ >0
f(@id) = {0 z <0
f(z; A) = probability density function
M = rate parameter
z = random variable

where, X is called the distribution rate.
distribution is 1/A and the variance of the exponenti

The mean of the exponential
al distribution is 1/A%.

12.CONDITIONAL DISTRIBUTION:

ability distribution of a random

A conditional distribution is the prob a
f conditional probability after

variable, calculated according to the rules o
observing the realization of another random variable.
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13.MARKOV PROCESS:

A Markov chain or Markov process is a stochastic model deseribing a sc-
quence of possible events in which the probability of each event depends only
on the state attained in the previous event. A countably infinite sequence,
in which the chain moves state at discrete time steps, gives a discrete-time
Markov chain (DTMC). A continuous-time process is called a continuous-

time Markov chain (CTMC).
14.0PERATIONS RESEARCH:

Operations research is an analytical method of problem-solving and decision-
making that is useful in the management of organizations.

15.MATHEMATICAL MODELLING:

Mathematical modeling is a method that represents and explains real
systems and occurrences using math formulas, descriptions and approaches.



Chapter-1

INTRODUCTION TO
STOCHASTIC PROCESS

In probability theory and related fields, a stochastic or random pro-
cess is a mathematical object usually defined as a sequence of random vari-
ables in a probability space, where the index of the sequence often has the
interpretation of time. Stochastic processes are widely used as mathemat-
ical models of systems and phenomena that appear to vary in a random
manner. Examples include the growth of a bacterial population, an elec-
trical current fluctuating due to thermal noise, or the movement of a gas
molecule Stochastic processes have applications in many disciplines such as
biology,chemistry,ecology, neuroscience,physics,image processing, signal pro-
cessing,control theory,information theory, computer science,and telecommu-
nications.Seemingly random changes in financial markets have motivated the
extensive use of stochastic processes in finance.

The term random function is also used to refer to a stochastic or random
process, because a stochastic process can also be interpreted as a random el-
ement in a function space. The terms stochastic process and random process
are used interchangeably, often with no specific mathematical space for the
set that indexes the random variables. But often these two terms are used
when the random variables are indexed by the integers or an interval of the
real line. If the random variables are indexed by the Cartesian plane or some
higher-dimensional Euclidean space, then the collection of random variables
is usually called a random field instead. The values of a stochastic process
are not always numbers and can be vectors or other mathematical objects.

A stochastic or random process can be defined as a collection of random
variables that is indexed by some mathematical set, meaning that cach ran-
dom variable of the stochastic proeess is uniquely associated with an clement
in the set. The set used to index the random variables is called the index
set. Historically, the index set was some subset of the real line, such as the
natural numbers, giving the index set the interpretation of time. Each ran-
dom variable in the collection takes values from the same mathematical space

10



known as the state space. This state space can b i

the real line or n-dimensional Euclidean space. r:fTnf{i};:izﬂgtlci:sttl,fcnzsgorsi;
that a stochastic process changes between two index values oftcn imc‘rprzfsd
as two points in time. A stochastic process can have many,outcomcs due to
its randomness, and a single outcome of a stochastic process is callcd’ am[‘;no'
other names, a sample function or realization. ‘ 7

Applications and the study of phenomena have in turn inspired the pro-
posal of new stochastic processes. Examples of such stochastic processes in-
clude the Wiener process or Brownian motion process,used by Louis Bachelier
to study price changes on the Paris Bourse, and the Poisson process, used
by A. K. Erlang to study the number of phone calls occurring in a certain
period of time.These two stochastic processes are considered the most im-
portant and central in the theory of stochastic processes,and were discovered
repeatedly and independently.

Rased on their mathematica) properties, stochastic processes can be grouped
into various categories, which include random walks, martingales,Markov pro-
cosses, Lévy processes,Gaussian processes,random fields,renewal processes,
and branching processes. The study of stochastic processes uses mathemati-
cal knowledge and techniques from probability, calculus, linear algebra, set
theory, and topology as well as branches of mathematical analysis such as
real analysis, measure theory, Fourier analysis, and functional analysis. The
theory of stochastic processes is considered to be an important contribution
to mathematics and it continues to be an active topic of research for both
theoretical reasons and applications.

Stochastic processes can he indexed by discrete or continuous time, or
even by other parameters. For example, a discrete-time stochastic process
might represent measurements taken at regular intervals, while a continuous-
time process might represent continuous observations. At each time index or
point in the parameter space, a stochastic proeess assigns random variable
that represents the state of the systeit. These random variables can ]1.51.\!-::
varions distributions, and their values are not deterministic but probabilis-
¢ independent or dependent on cach other.
Process, meaning that the current
but possibly on carlier states as

tic. The random variables can b
Dependence introduces memory into the
state depends not only on the previous state
well.
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Chapter-2
TYPES OF STOCHASTIC PROCESS

2.1 BERNOULLI PROCESS

In probability and statistics, a Bernoulli process is a finite or infinite se-
quence of binary random variables, so it is a discrete-time stochastic process
that takes only two values, canonically 0 and 1.

A coin flip is an example of a Bernoulli trial, which is any random exper-
iment in which there are exactly two possible outcomes. The two possible
outcomes of a Bernoulli trial are usually called success and failure. In this
case, we define heads as a success and tails as a failure.

The component Bernoulli variables Yi are identically distributed and in-
dependent. Prosaically, a Bernoulli process is a repeated coin flipping, pos-
sibly with an unfair coin. Every variable Yi in the sequence is associated
with a Bernoulli trial or experiment. They all have the same Bernoulli dis-
tribution. Much of what can be said about the Bernoulli process can also be
generalized to more than two outcomes; this generalization is known as the
Bernoulli scheme.

For any Bernoulli process Y; we have,
E(Y;)=p, E(Y?) = p and Var (Y}) = p(1 - p)

Let (Y;/i = 1,2,...)be a Bernoulli process. Consider the sequence of par-
tial sums (Sn); n = 1,2,...

where, S, =Y+ Y+ ...+ Y,
P(Sn = 'I':)fsn—] = ;"] :P(Yu . 0} . 1-—pand -P(Sn = k/Sﬂ—l - 'k_]‘} ™

pYn=1)=p.

12
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A coin flip is an example of a Bernoulli trial, which is any random exper-
iment in which there are exactly two possible outcomes. The two possible
outcomes of a Bernoulli trial are usually called success and failure. In this
case, we define heads as a success and tails as a failure.

The component Bernoulli variables Yi are identically distributed and in-
dependent. Prosaically, a Bernoulli process is a repeated coin flipping, pos-
sibly with an unfair coin. Every variable Yi in the sequence is associated
with a Bernoulli trial or experiment. They all have the same Bernoulli dis-
tribution. Much of what can be said about the Bernoulli process can also be
generalized to more than two outcomes; this generalization is known as the

Bernoulli scheme.
For any Bernoulli process Y; we have,

EY:))=p, E(Y?) = p and Var (Y;) = p(1 — p)
Let (Yi/i=1,2,...)be a Bernoulli process. Consider the sequence of par-
tial sums (Sn); n = 1.2,...

where, S, = Y1+ Yo+ ... + Ve

P(ﬂsﬂ — J'"u'/b‘n—l — ;») = p(}/n — U) = it/ and p(SH o A./S“'l = 1}

p(yﬂ == l} = P

12




Then S, = Sn-1+ Yn

robability of occurrence of 5, depends on S, — 1, Thercfore

Hence the p
rete parameter Markov process.

Sp/n=12,..1s discrete state disc

2.1.1 Binomial random process

discrete parameter Markov process, where each S, is
(for eg; Number of winning lottery tickets when
kind. Also, the number of left-handers in a
is called as a Binomial

The discrete state,
a binomial random variable

you buy 10 tickets of the same
randomly selected sample of 100 unrelated people. )

random process.
P(S, = k) = (D)p*(1 —p)" " E(5) =P
Var (5,) = np(1 —p)Gs,(z) = (1P + pz)"

2.1.2 Non-homogeneous Bernoulli process

ch Bernoulli variate i has dis-
called as a non-homogencous
f the Bernoulli process is to

Let (V;/i =1,2) bea Bernoulli process. If ea
then the Bernoulli process is
Vet another generalization 0
has more than 2 possible outcomes.

tinct parameter p;
Bernoulli process.
assume that each trial

2.1.3 Random walk

n extension of the Bernoulli process. Here
tive direction in the Lt trial if the outcome
e negative direction if the outcome
n which a point be-
ance of onc unit for
andormn at cach step

The random walk process is a
the process takes a step in the posi
of the trial is a success and a step in th
is a failure.A typical example 18 the drunkard’s walk, 1
ginning at the origin of the Euclidean planc moves a dist
cach unit of time, the direction of motion, however, being r

nee of independent discrete r.v. and define

Lot Y;/i = 1,2,...be a seque
Then the Markov chain Sa./n = 1,2,..18

the partial sum Sn = ¥ i) Yi,
known as a random walk.
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2.2 LEVY PROCESS

[n probability theory, a Levy process, named after the French mathe-
matician Paul Levy, is a stochastic process with independent, stationary
increments: it represents the motion of a point whose successive displace-
ments are random, in which displacements in pairwise disjoint time intervals
are independent, and displacements in different time intervals of the same
length have identical probability distributions. A Levy process may thus be
viewed as the continuous-time analog of a random walk.

The most well known examples of Levy processes are the Wiener process,
often called the Brownian motion process, and the Poisson process. Further
important examples include the Gamima process, the Pascal process, and the
Meixner process. Aside from Brownian motion with drift, all other proper
Levy processes have discontinuous paths. All Levy processes are additive

processes.
MATHEMATICAL DEFINITION:

A Levy process is a stochastic process X = X, :t> 0 that satisfies the

following properties:

1. X, = 0 almost surely;

2. Independence of increments: For any 0<t <ty <. <tn <00,
Xy — Xop, Xey — Xty oo Xty — X,,_, are mutually independent;

3. Stationary increments: For any § < t, X; — X, is equal in distribution
to Xt_., .

4. Continuity in probability: [or any € > 0 and ¢t > 0 it holds that

limy, o PIXY + D= XG) > €) = 0.

If X is a Levy process then one may construct a version of X such that

t — X, is almost surely right continuous with left limits.

14



PROPERTIES:

Independent increments

A continuous-time stochastic process assigns a random variable X, to cach
e. In effect it is a random function of t. The increments

of such a process are the differences X, — X, between its values at different
To call the increments of a process independent means that
increments X — X; and Xy — X, arc independent random variables whenever
the two time intervals do not overlap and, more generally, any finite number
of increments assigned to pairwise non- overlapping time intervals are mutu-

ally (not just pairwise) independent.

point t > 0 in tim

times t < s .

Stationary increments

the increments stationary means that the probability distribution

y on the length ¢ —s of the time interval;
identically distributed.

To call
of any increment X;— X’ depends conl

increments on equally long time intervals are

If X is a Wiener process, the probability distribution of X, — X, is normal

with expected value 0 and variance t — s.

If X is a Poisson process, the probability distribution of X; — X, is a

Poisson distribution with expected value
At —s)

where A > 0 is the ”intensity” or ” rate” of the process.

ss, the probability distribution of X; — X is a

If X is a Cauchy procc
= 1/7[t/(a® + )]

Cauchy distribution with density flz;t)

Infinite divisibility
The distribution of a Levy process has the property of infinite divisibility:
given any integer n, the law of a Levy process at time t can be rep resented

15



as the law of the sum of n independent random variables, which are precisely
the increments of the Levy process over time intervals of length t/n. which
arc independent and identically distributed by assumptions 2 and 3. Con-
versely, for each infinitely divisible probability distribution F, there is a Levy
process X such that the law of Xjis given by F. )

Moments

In any Levy process with finite moments, the nth moment pn(f) = E(X7)is
a polynomial function of t; these functions satisfy a binomial identity:

fin(t +8) = Lo () itk () - (8)-

2.3 POISSON RANDOM PROCESS

A Poisson process is a simple and widely used stochastic process for mod-
eling the times at which arrivals enter a system. It is in many ways the
continuous-time version of the Bernoulli process. For the Bernoulli process.
the arrivals can occur only at positive integer multiples of some given in-
crement size. The process by a sequence of independently and identically
distributed binary random variables (11D random variables), Y1, Y2, . . . .
where Yi = 1 indicates an arrival at increment i and Yi = 0 otherwise.

We observed that the process could also be characterized by the sequence
of interarrival times. These interarrival times are geometrically distributed
[ID random variables. For the Poisson process, arrivals may occur at ar-
bitrary positive times, and the probability of an arrival at any particular
instant is 0. This means that there is no very clean way of describing a
Poisson process in terms of the probability of an arrival at any given instant.
[t is more convenient to define a Poisson process in terms of the sequence of
interarrival times, X1, X2, . . ., which are defined to be 11D. Before doing

this, we describe arrival processes in a little more detail.

numbcr of occurrences of a certain cvent in

Let N(0,1) represents the
(N(t)::=2(0,1)isa Poisson process

(0,1), then the discrete random process
provided the following postulates are satisfied

16



(i) P(1 oceurrence in (¢, + At)) = AAL + 0(At)
(ii) P(0 occurrence in ( (t + At)) = 1 = AAt + 0(At)

(iii) P(2 or more in ((¢ + At)) = 0(AL)

(iv) N(r)is independent of the number of occurrence of the event in any

interval prior or after (0,t)

(v) The probability that the event occurs a specified number of times in
(fo, fo+ 1) depends only on but not on {p

We know that the Poisson process is a continuous parameter discrete
state process. Suppose that events occur successively in time so that inter-
vals between successive events are independent and identically distributed
according to an exponential distribution Fx(z) =1- ¢~ Let the number of
events is the interval [0, 1] is denoted by N(t). Then the stochastic process
(N(t):t>0)isa Poisson process, with mean A . Note that the number of
events in the interval [0, 1] is a Poisson distribution with parameter A.

The probability distribution of N(t) is given by,
P(N(t)=n)= 5;1},”—):, n=0,1,2,... This idea can be generalised to define

the second order probability function of a homogeneous Poisson process:

PROPERTIES:

1. For each t, N(t) depends on ) and hence it is not a stationary stochas-

tic process.

9. BE(N(t)) = Var(N(t)) = M
N(t)

N(t) ‘};_l —= X and limse Vﬂr(-t__} = A

lim; 00 E(—g__} = limee

In otherwords -“—Jfﬂ(:urwcrgu:-; to A as b — 00. Because of this A 1s called

the arrival rate of the poisson process.

a large number of renewal

3. Under very general assumptions the sum of

17



process behaves like a Poisson process.

A Lot N; = [N:@):t=2(0) ;¢=12,..nben indepcndent Poisson pro-
coss with renewal rates Ap, Az, - M. Then the superposition of N; = 1,2,..n
is also a Poisson variate with arrival rates Ap, Az, ... Aq.

5. Poisson process can be identified as a renewal process with exponen-
tially distributed intervals.

6. The Poisson process is a Markov process.

7. The sum of two Independent Poisson process is a Poisson process.

8. The difference of two Independent Poisson process is not a Poisson
process.

9. The inter arrival time of a Poisson process with parameter A has an

exponential distribution with mean >

10. The probability law of the Poisson process {X(t)} is the same as that

of a Poisson distribute with parameter At.

9.4 GAUSSIAN PROCESS

atistics, a Gaussian process is a stochastic pro-
riables indexed by time or space), such that
dom variables has a multivariate normal
distribution. The distribution of a Gaussian process is the joint distribution
of all those (infinitely many) random variables, and as guch, it is a distribu-
tion over functions with a continuous domain, e.g. time or space.

Gaussian Processes (GP) are a nonparametric supervised learning method
used to solve regression and probabilistic classification problems.

In probability theory and st
cess (a collection of random va
every finite collection of those ran

X ~ N(p, £), where ji is the mean and X is

A Gaussinn random variable
ability density function:

the covariance matrix has the following prob

18
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where |2| is the determinant of

Gaussian processes arc useful in statistical modelling, benefiting from
properties inherited from the normal distribution. For example, if a ran-
dom process is modelled as a Gaussian process, the distributions of various
derived quantitics can be obtained explicitly. Such quantitics include the
average value of the process over a range of times and theé error in cstimating
the average using sample values at a small sct of times. While exact models
often scale poorly as the amount of data increases, multiple approximation
mothods have been developed which often retain good accuracy while dras-

tically reducing computation time.

Gaussian Process Regression has the following properties:

e GPs are an clegant and powerful ML method.
We get a measure of (un)certainty for the predictions for free.
GPs work very well for regression problems with small training data
sel sizes.
(:Ps are a little bit more involved for classification (non-Gaussian like-
lihood).

We can model non-Gaussian likelihoods in regression and do approxi-

mate inference for c.g., count data (Poisson distribution)

GP implementations: GPyTorch, GPML (MATLAB), GPys, pyGPs,
and scikit-learn (Python)

2.5 BROWNIAN PROCESS

Brownian process is another widely-used random process. [L has heen

used in engineering, finance, and physical sciences. It is a Ganssian random

19



process and it has been used to model motion of particles suspended in a
fluid, percentage changes in the stock prices, integrated white noise. ote.

Examples of brownian motion include:

¢ MNovement of pollen grains in water.

¢ Novement of dust particles in air.

¢ Diffusion of pollutants in air.

¢ Movement of holes of clectrical charge in semiconductors.

A Brownian motion (or Wiener Process) is a stochastic process[X(t),£ >
0] with the following properties:

(1) Every increment X (t) — X (s) during (s, t) is normal with mean e(f — s)
and variance o”(t — 5)

(ii) For all 0=ty < ¢ < ..t < oo, and n, the increments X(t,) —
X(to), ..., X (tn) — X (¢,—1) are independent.

When ¢ =0, 6% = 1, we have the standard Brownian motion denoted by
W(t), where we may take W(0)=0.

ELEMENTARY PROPERTIES

The following elementary properties of W(t) follow from the definition
and the properties of the normal distribution.

Property 1: The Weiner process W(t) is a Markov process with transi-
tion distribution function

Flx, t; 19, s) =PIV (t) € z|W(s) = x0]

* 1 u— :1:0]2]
p|———————| du
- ———— XD
/_m JAr(t — s) [ 2(¢ —s)

:F(ﬂ" — .7.'[},.". . 5‘)

20



Property 2: There is a consistent system of . o
h% probability distrit .
[(W(t),t > 0] y distributions of

Property 3: For the standard “’iener process IV(I) . with ”;“1) —
a, W(ty) = b,t; <t < ty, the conditional distribution of W(¢) is normal with

b—a - .
mean = a + (t — 1), variance = (t2 —t)(t - t,)
b=t ta — 1y

The Property 3 can be established as follows

Y =W(t) - W(t),Z = W(ts) — W(t)

are independent normal with means 0 and variances (¢t — t;) and (¢, — #)
respectively.

Property 4: (Symmetry Properties). If [W(¢),t > 0)] is a standard
Wiener process, so also are the following processes:

()WL () = ¢ W(t/c?),t > 0 (scale symmetry),
(ii)Wo(t) = W(t + h) — W(h)h > 0, > 0 (translation of increments).
(iii) Wa(t) = tW (¢ 1)(t > 0)(inversion),

(iv)Wa(t) = —W(2).(t > 0) (reflection).

2.6 BIRTH AND DEATH PROCESS

In stochastic processes, a pure birth process is a specific type of cout.inu.ous-
time Markov process where events occur al a constant rate. In a pure birth
process, the state of the system represents the number of entities pre:-"ient
at any given time, and entities are born (or added) to the system at a rate

21



Property 2: There is a consistent system of e e
robability dis _
[‘V(t):t = U] p ility distributions of

Property 3: For the standard Wiener process 1V (t) , with W(t,) =
a,W(t;) = b,t; <t < ty, the conditional distribution of IW(t) is normal with

b—a B B
(t —t), variance = (b2 —t)(t—t1)
= "'2 -4
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(iii) Wy(t) = tW (¢~1)(¢t > 0)(inversion),

(iv)Wa(t) = —W(2).(t = 0) (reflection).

2.6 BIRTH AND DEATH PROCESS

In stochastic processes, a pure birth process is a specific type ofmntinu.ou&
time Markov process where events occur at a constant rate. In a pure birth
process, the state of the system represents the number of enlities present
at any given time. and entities are born (or added) to the system at a rate
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proportional to the current number of entitics.

ey characteristics of a pure birth process in the context of stochastic
processes include:

¢ Continuous Time: Events occur continuously over time rather than at
discrete time point

e Markov Property: The future behavior of the process depends only on
its current state and not on its past states, given the current state

e Birth Rate: Entities are born into the system at a constant rate, with

the rate typically being proportional to the number of entities already
present in the system

e No Death: In a pure birth process, entities are only added to the sys-
tem; there are no mechanisms for removal or death

e Memorylessness: The inter-arrival times between successive events (births)
are exponcentially distributed, implying that the process has no memory
of how much time has passed since the last event.

e State Space: The state space of the process is typically the set of
nonnegative integers (0, 1, 2, ...) representing the number of entities
present in the system.

Pure birth processes find applications in various fields, including pop-
ulation dynamics, epidemiology, and branching processes. They provide a
mathematical framework for modeling systems characterized by continuous
growth without any limiting factors such as competition or death.

We have studied in the Poisson proces that in an intervel of infinitesimal
length h, the probability of exactly one occurrence is Ak + O(h) and that of
more than one occurrence is of O(h). Here O(h) is used as a symbol to denote
a function of i which tends to 0 more rapidly than A (i.e) As h — 0, 9%'—) — 0
Therefore in the intervel (¢, + i)

P(N(h) =1)= A+ O(h)
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P(N(h) = k) = O(h)
&

[ 2

But we have Yoo, P(N(h) = k) =1
= PN(h)=0)=1-= M+ 0(h)

In the classical Poisson process thie conditional probabilities are constant.
Here the probability that & events occur between ¢ and ¢ + & given that n
events oceured in (0,4) is given by

P(N(h) = K/N(t) = 1) = A + O(R), pe=it
= 0(h), k>2
=1 —l\h"!"O(h), k=10

which is independent of t as well as 2. We can generalise this process by
considering that A is not a constant but is a function of n or £ or both. The
resulting process will sill be Markovian in character.

Case (i): First let us consider the case when A to be a function of n, the
population size at the instant.

Now, P.(h) = P(N(R)=k/N(t)=n)= A h+O(h), k=1
= O(h)}, k>2
=1-Xh+0(h), k=0

Proceeding as in the Poisson distribution we have

Po(t + 1) = Pa(t) (1 = Aty + Paca(t)da(B) + O(h)n 2 1
= P;(:f) “Ar:Pn(t) + )"ﬁ—an—l(t)rﬂ 2 1
Prﬁ') = —Ay Pu(f)

o

For given initial conditions explicit expressions for P,(t) can be obtained
from the above equations. This process is called a pure birth process. Now
the process corresponding to A, = 1A is called the Yule-Ifurry process.
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2.7 BRANCHING PROCESS

A branching process is a stochastic process that models the evolution of a
population over discrete time steps, where individuals in the population can
reproduce and produce offspring according to certain probabilistic rules. In
a branching process, the population at each generation is composed of indi-
viduals, and each individual can independently give rise to a random number
of offspring. The offspring distribution typically follows a probability distri-
bution, which may vary between individuals.

There are different types of branching processes depending on the as-
sumptions made about the population’s characteristics. The most common
branching process is the Galton-Watson process, which is a discrete-time
model that assumes that the number of offspring produced by each individ-
ual is a fixed, non-negative integer.

The branching process include the mean and variance of the offspring
distribution, which determine the growth or decline of the population over
time. If the mean number of offspring per individual is greater than 1, the
population is expected to grow exponentially. Conversely, if the mean is less
than 1, the population is expected to decline and eventually go extinct.

The study of branching processes often involves techniques from proba-
bility theory, including generating functions, Markov chains, and martingale
theory. Branching processes provide a powerful framework for understanding
the dynamics of populations and systems that involve random reproduction
and growth.

The most common formulation of a branching process is that of the Gal-
ton-Watson process. Let Z,, denote the state in period n and let X,; be
a random variable denoting the number of direct successors of member i
in period n, where X, ; arc independent and identically distributed random
variables over all ne (0,1,2,...) and i€ (1....,Z,). Then the recurrence equa-
tion is

le

dny1 = z Xﬂ.i
i=1
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Figure 1: Branching process figure construction

with Zg = 1.
Alternatively, the branching process can be formulated as a random walk.

Let S; denote the state in period i, and let X; be a random variable that is
iid over all i. Then the recurrence equation is

+1
Sin =Si+Xi+1"1=ZXj—i

i=1
with So = 1.For this formulation, Let Si represent the number of revealed
but unvisited nodes in period i, and let Xi represent the number of new nodes
that are revealed when node i is visited. Then in each period, the number of
revoaled but unvisited nodes equals the number of such nodes in the previous
period, plus the new nodes that are revealed when visiting a node, minus the
node that is visited. The process ends once all revealed nodes have been

visited.



Chapter-3

APPLICATIONS OF STOCHASTIC
PROCESS

Stochastic process is widely used as a mathematical model of systems and
phenomena that appear to vary in a random manner. As a classic technique
from statistics, stochastic processes are widely used in a variety of areas
including bioinformatics, neuroscience, image processing, financial markets,
ete. Here it is discussed about how stochastic process is related to machine
learning and what are its major application areas.

Below are some general and popular applications which involve the stochas-
tic processes:-

e Stochastic models are used in financial markets to reflect the seemingly
random behaviour of assets such as stocks, commodities, relative cur-
rency values (i.c., the price of one currency relative to another, such
as the price of the US Dollar relative to the price of the Euro), and
interest rates.

o Manufacturing procedures are thought to be stochastic. This assump-
tion holds true for both batch and continuous manufacturing processes.
A process control chart depicts a particular process control parameter
across time and is used to record testing and monitoring of the process.

¢ The marketing and shifting movement of audience tastes and prefer-
ences, as well as the solicitation and scientific appeal of the certain film
and television debuts (i.c., opening weckends, word-of-mouth, top-of-
mind knewledge among surveyed groups, star name recognition, and
other elements of social media outreach and advertising), are all influ-
enced in part by stochastic modelling.
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e Stanislaw

Ulam and Nicholas Metropolis popularized the Monte Carlo
approach, which is a stochastic mcth.uc]. T'h(.: usc of ran.d(:mnc.ss‘ al.nfl
the repetitive nature of the procedure is reminiscent of casino activities.
Sinndation and statistical sampling methods were typically used to test
a previously understood deterministic problem, rather thajl the o.thrr
way aronud. Though historical examples of an “inverted” technique
exist, they were not regarded as a generic strategy until the Monte
Carlo method gained popularity.

Probabilistic Models: Stechastic processes are used to build proba-
bilistic models that can capture the uncertainty in data and make pre-
dictions based on probabilistic rcasoning. Bayesian inference, hidden
Markov models, and Gaussian processes are examples of probabilistic
models that rely on stochastic processes.

Time Series Analysis: Stochastic processes are widely used in time
series analysis, where data points are collected sequentially over time.
Models such as autoregressive integrated moving average (ARIMA) and
stochastic volatility models use stochastic processes to model the un-
derlying dynamics of time scries data.

Generative Models: Stochastic processes are fundamental to genera-
tive models, which are used to generate new data samples from a given
distribution. Variational autoencoders (VAEs) and generative adver-
sarial networks (GANs) are examples of generative models that rely on
stochastic processes.

Optimization: Stochastic optimization algorithms, such as stochastic
gradient descent (SGD), use stochastic processes to optimize complex
objective functions that involve randommess or noise, These algoritluns
are commonly used in training machine learning models.

Natural Language Processing: Stochastic processes are used in vari-
ous natural language processing tasks, such as language modeling, text
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o Stanislaw Ulam and Nicholas Metropolis popularized the Monte Carlo

approach, which is a stochastic method. The use of rnnr]mrmr:h's' ff,nrl
the repetitive nature of the procedure is reminiscent of casino activities.
Simulation and statistical sampling methods were typically nsed to test
a previously understood deterministic problem, rather than the other
way around. Though historical examples of an “inverted” technique
exist, they were not regarded as a generic strategy until the Monte
Carlo method gained popularity.

Probabilistic Models: Stochastic processes are used to build proba-
bilistic models that can capture the uncertainty in data and make pre-
dictions based on probabilistic reasoning. Bayesian inference, hidden
Markov models, and Gaussian processes are examples of probabilistic
models that rely on stochastic processes.

Time Series Analysis: Stochastic processes are widely used in time
series analysis, where data points are collected sequentially over time.
Models such as autoregressive integrated moving average (ARIMA) and
stochastic volatility models use stochastic processes to model the un-
derlying dynamics of time series data.

Generative Models: Stochastic processes are fundamental to genera-
tive models, which are used to generate new data samples from a given
distribution. Variational autoencoders (VAEs) and generative adver-
sarial networks (GANs) are examples of generative models that rely on
stochastic processes.

Optimization: Stochastic optimization algorithms, such as stochastic
gradient descent (SGD), use stochastic processes to optimize complex
objective unctions that involve randommness or noise, These algorithins
are commonly used in training machine learning models.

Natural Language Processing: Stochastic processes are used in vari-
ous natural language processing tasks, such as language modeling. text
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generation, and machine translation,  Probabilistic wodels Tused on
stochastic processes help capture the uncertainty nud virinhility o -

guage data.

Stochastic processes find applications in a wide nrray of fields due to thed
ability to model randonmess and uncertainty in varions systoms.Stochnstic
processes have wide relevance in mathematies hoth for theoretion] nspoecls
and for their numerous real-world applications in various domaing, They
represent a very active research field which is ablrneting the growing interest
of scientists from a range of disciplines.

In particular, the focus here is on applieations of stochastic processes ns
models of dynamic phenomena in research arcas certain 1o he of interest,
such as economics, statistical plysics, biology, theoretical neurobiology, nnd
reliability theory. Various contributions dealing with theoretical issnes on
stochastic processes are also included. Stochnstic processes ave Lhie key Lools
for modeling and reasoning in many physical and engincering systems, The
stochastic process is a probability model that represents the possible smnple
paths as a collection of time-ordered random variables.  As o mathemal-
ical model, it is widely used to study phenomenn nnd systems that seem
to vary randomly. Stochastic processes arve a classic technique from statis-
tics that are widely nsed in a wide range ol [iclds including bioinforudics,
neurescience, image processing, the financial markets, aud others. In machine
learning, stochastic gradient descent and stochastic gradienl boosting, nre the
two most common algorithimns.

Several machine learning inethods and models use stochasticity to explain
their results. The reason is that. many oplimizations and learning nlgorithms
work in stochastic domains, and some algorithms depend on randomuess or
probabilistic decisions. In this section, we will examine the sourees of un-
certainty and the nature of stochastie algorithms in maehine learning,  In
the financial markets. stochastic wodels are used Lo refleet seemingly ran-
dom patterns of assel prices such as stocks, commoditios, relative cirreney
values (e.g., the price of the US Dollar relative to the price of the Fura),
and interest rates. Manufacturing proeesses nre considered stochastic, This
assumption applies to both bateh and conlinuous mamifacturing. An exn-
ple of a process control chart is a chart that records the performanee of o
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particular process control paramcter over time.

Stochastic modeling informs some aspects of marketing, shifting audi-
ence preferences, crowdsourcing, and the scientific appeal of certain film
and tclevision debuts (i.c., opening weekends, word-of-mouth, top-of-mind
knowledge, star recognition, and other social media outreach and advertising

strategies).

Although stochastic process theory and its applications have made great
progress in recent years, there are still a lot of new and challenging prob-
lems existing in the areas of theory, analysis, and application, which cover
the fields of stochastic control, Markov chains, renewal process, actuarial sci-
ence, and so on. These problems merit further study by using inore advanced
theories and tools.

Overall, stochastic processes play a crucial role in machine learning by
providing a mathematical framework to model uncertainty, variability, and
randomness in data and algorithms. Their applications span a wide range
of domains, including finance, manufacturing, marketing, simulation, and
optimization.

29



Chapter-4
QUEUEING THEORY

Introduction

Queucing theory is the mathematical study of waiting lincs, or queues. A
queueing model is constructed so that queue lengths and waiting time can
be predicted. Queueing theory is generally considered a branch of operations
research because the results are often used when making business decisions
about the resources needed to provide a service.

Queueing theory dates back to A. K. Erlang’s (1878-1929) fundamen-
tal work on the study of congestion in telephone traffic, and since then it
has been applied to a wide variety of applications such as inventory control,
road traffic congestion, aviation traffic control. machine interference prob-
lem, biology, astronomy, nuclear cascade theory and, of course, voice and
data communication networks. Simple queues collectively form a chain of
queues, where queues, in turn, feed other queues, and this process can go on
for several lavers forming complex networks of queues. The mathematical
characterization and study of these phenomena constitute queueing theory.

A queue. or a waiting line, is formed by arriving customers/jobs requir-
ing service from a service station. If service is not immediately available,
the arriving units may join the queue and wait for service and leave the sys-
tem after being served, or may leave sooner without being served for various
reasons. In the meantime, other units may arrive for service. The source
from which the arriving units come may be finite or infinite. An arrival may
consist of a single unit or in bulk. The service system may have either a
limited or unlimited capacity for holding units. and depending on that. an
arriving unit mayv join or leave the system. Service may be rendered either
singly or in bulk. The basic features of a queue are:

(i) the input process,

(i) the service mechanism.
(iii) the queue discipline and
(iv) the server’s capacity.
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Queuing Models in Opecrating System

In general, there is no fixed sct of processes that run on systems; thus,
measuring the exact processing requirements of processes is impossible. We
can, however, measure the distributions of CPU bursts and I/O hursts over
the course of a process and derive a mathematical formula that identifies
the probability of a specific CPU burst. The arrival rate of processes in the
system can be approximated in the same way. The development of queu-
ing theory, a branch of mathematics, resulted from the use of mathiematical
models for evaluating the performance of various systems. The fundamental
model of queuing theories is the same as the model of a computer system.
Each computer system is represented as a collection of servers such as CPUs

and I/O devices, each with its own queue.

Components of Queuing System

A queuing system typically includes the following elements:

e Arrival process: The arrival process describes how customners enter the

system.

Server: The server is the person who provides the service to the cus-
tomers.

Queue: Customers who are waiting for service are held in a queue

Service discipline: The order in which customers are served is deter-
mined by service discipline.

Service time distribution: The amount of time required to serve a cus-

tomer is deseribed as service time distribution.

Departure process: The departure process describes how customers exit
the systemn once they have been served.
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e System performance measures: System performance measures arc used
to analyze and cvaluate the system’s performance. Examples include
the average wait time, the number of customers in the system, and the

server’s utilization.

Optional extras include multiple servers or channels, priority service, and

feedback or renege mechanism.

Number of Servers

The number of servers in a queuing system can vary depending on the
application and the level of service desired. In some cases, a single server
may suffice, whercas, in others, multiple servers may be required to mect
demand.

o Single-server queuing systems: These are the most fundamental type of
queuing systems, and they are frequently used in simple applications
such as retail stores or fast-food restaurants. Customers arrive and
queue to be served by a single server in these systems.

o Multi-server queuing systems: Multi-server queuing systems on the
other hand, are used in more romplex applications where demand is
high and more than one server is required to handle the workload. A
call center with multiple agents to handle incoming calls is an example
of this type of system. Customers are usually directed to an available
server in a multi-server system, and the service time distribution is as-
sumed to be the same across all servers.

Various methods, such as queuing analysis, simulation, and optimization
techniques, can be used to determine the number of servers in a queuing
system. The goal is typically to find the optimal number of servers that
u;inimjztrs systen costs {e.g., stafl wages) while providing an acceptable level
Ol service,
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Measures of Performance for Queuing Systems

Performance measures for queuing systems are used to assess how well the
system is performing and to identify arcas for improvement. Seme common
performance indicators for queuing systems arc:

Utilization: The percentage of time spent by the server serving cus-
tomers. A high utilization rate indicates that the server is being used
effectively, whereas a low utilization rate indicates that the server is
being underutilized

Average waiting time: The amount of time customers spend waiting in
line to be served. A long waiting time may indicate a system bottle-
neck, whereas a short waiting time indicates that the system is running
efficiently.

An average number of customers in the system: The average number of
customers in the system, including those being served as well as those
waiting in line. A high number of customers in the system may indicate
that there is a high demand for service, whereas a low number indicates
that the system is running efficiently.

An average number of customers in line: The average number of cus-
tomers in line to be served. A large number of customers in the queue
may indicate that the system is unable to meet the demand for ser-

vice, whereas a small number indicates that the system is operating
efficiently.

Throughput: The rate at which the system serves customers. A high
throughput indicates that the system is running cfficiently, whereas a
low throughput may indicate that the system has a bottleneck.

Notation for Queues

Kendall's notation and A/S/n notation are two popular notations for
describing queues. . it
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e Kendall's notation: This describes a queuc by “5'"1.1:5 a sct of symbols
to represent the queuc’s various characteristics. It is ?cprcscntcd by a
three-letter notation, with cach letter representing a diffcrent aspect of
the queue. The first letter denotes the arrival process, the second the
service process, and the third the number of servers.

:;_7
y
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>
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»
¥
J
)
)
)
e A/S/n notation: In this notation A represents the probability distribu-
' tion of the interarrival time, S represents the service time distribution,
: and n represents the number of servers.

i Queue Discipline

The order in which customers are served in a queuing system is referred
to as queue discipline. In practice, there are several queue disciplines that
are used, including:

o First-In-First-Out (FIFO): Customers are served in the order in which
they arrive (first-in, first-out). This is the most commonly used queue
discipline in retail stores, fast-food restaurants, and other similar es-
tablishments.

o Last-In-First-Out (LIFO): Customers are served in reverse order of ar-
rival (last-in-first-out, or LIFO). This discipline is less commonly used
than FIFO, but it can be found in some applications, such as a stack
of plates in a cafeteria.

* Priority: Customers are served in accordance with their priorily level.
Customers with the highest priority are served first, followed, by cus-
tcnme?s with lower priority. This discipline is used in situations where
certain customers, such as in an emergency room or a customer service
call center, must be served hefore others.

* Random: Customers are served at random. Shortest Job first (SJF):
C_ustmncrs are served based on the time required to complete their ser-
vice, with the shortest jobs served first.
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e Processor sharing: Processor sharing means that all customer requests
arc treated equally and receive an equal share of the scrver’s time.

Queuing Models

Below are the four quening models that will be discussed here:
1. [M/M/1): {//FCFS} Queue System

M/M/1 denotes a qucyi:(g system with one server and a Poisson dis-
tribution for _customer interarrival times and service times. The notation
JFCFS indicates that a first-come-first-served (FCFS) service discipline is
being used, which means that customers are served in the order in which
they arrive. This type of queue is also known as an M/M/1/FCFS queue
or an M/M/1/FIFO (first-in-first-out) queue. It is one of the most basic
and widely studied queucing models in queuing theory, and it is frequently
used as a starting point for understanding the performance of more complex
queueing systems. To analyze and evaluate an M/M/1 queue, several perfor-

mance measures arc commonly uscd. Among the most important measures
are:

1. The average number of customers in the system
2. The average waiting time in the queue.

3. The system utilization.

4. The probability of a customer finding the server busy.

These metrics can be computed using a variety of analytical techniques,
including Queueing formulae, Markov Chain analysis, and even numerical
methods. In the case of the M/M/1 queueing model, closed-form solutions
for these measures are available, making the analysis relatively simple.

) 2)- [M/M/1]: {N//FCFS} System (Limited queuce length sys-
cm

It is a single-server queucing system with a Poisson arrival process and an
(’-XP_OHPnUal service time distribution. N denotes a limited queune length, im-
plying that the queue can only hold a certain number of customers. The
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notation N/FCFS indicates that the service discipline is first-come-first-
served (FCFS), which means that customers arc served in the order in which
they arrive, but also that when the quene is full, new arriving customers
arc blocked or rejected, a practice is known as Balking and Rencging. An
M/MI/1/FCFS/N or M/MN/1/FIFO/N queue is another name for this type
of queuing system. It is a variant of the basic M/M/1 queue with a limited
buffer capacity, which means that the number of customers in the system is
limited by N. When the buffer is full, additional customers may be blocked
or rejected, complicating the analysis and necessitating the modification of
some performance measures to include the blocked /rejected customers. Some
of the most important performance measures that can be calculated. similar

to an M/M/1 system, are:

1. The average number of customers in the system (including those blocked
or rejected).

&)

The average waiting time in the queue.

3. The system utilization.

4. The probability of a customer finding the server busy.
5. The probability of customers being blocked /reneged.

3. M/D/1 Queue

The M/D/1 queue is a quening system in which customer arrival times
follow a Poisson distribution (M), service times are deterministic (D) and
have a constant value, and the system has one server. This is also known
as an M/D/1/FCFS or M/D/1/FIFO queuc. where FCFS or FIFO denotes
the first-come-first-served service discipline. This type of queuing system is
uscful for simulating situations where customer service times are known in
advance and arc consistent, such as a carwash service. The queue will be
stable if the arrival rate is less than the service rate. otherwise. it will be
unstable due 1o the deterministic service time. The performance measures
for this svstem are similar to those for the M/ M/1 queue, but because the
service time is deterministic. closed-form solutions for these measures are
frequently easier to obtain. Among the most nnportant measures are:

I. The average number of customers in the system.
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2. The average waiting time in the queue.

3. The system utilization.
4. The probability of a customer finding the server busy.

Furthermore, the queue length is predictable in this case, which means that
given a specific arrival rate and service time, the number of customers in the
system will always be the same, rather than being dependent on the random-

ness of the service time as it is in M/M/1.

4. M/M/c Queue

The M/M/c queue is a queuing system in which customer arrival times
follow a Poisson distribution (M), service times are also exponentially dis-
tributed (M), and the system has c servers. This is also known as an
M/M/c/FCFS or M/M/c/FIFO queue, where FCFS or FIFO denotes the
first-come-first-served service discipline. It is also known as the Erlang-c
queue. This type of queuing system is useful for simulating situations in
which multiple servers provide service. This queuing system allows customers
to be served concurrently by the ¢ servers, increasing system capacity and
decreasing average customer wait time. This system’s performance metrics
are similar to those of the M/M/1 queue. However, some measures are more
difficult to caleulate because the number of servers c influences the queue’s
behavior. The most important measures are as follows:

1. The average number of customers in the system.

2. The average waiting time in the queue

3. The system utilization.

4. The probability of a customer finding the scrver busy
5. The probability of customers waiting in the queue.

The probability of customers being blocked. The M/M/e queuce is a more
complex model than the M/M/1 queue, and the performance measures are
calculated using various approximate and numerical methods. Furthermore,
when the number of servers is large, as in many industrial and telecommu-
nications systems, the system can be approximated as an M/M/c queue.
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Applications of Quecuing Thecory

« Finance:

jeory, i husiness enn davelop more ellieienl nyn-
tems, Processes, pricing mechanisms, stalling solulions, anel arrival
management stralegies 10 reduee customer wail timen ane nerense b
number of customers Lliat can be sorved. Therefore, husinessen une infor-
mation gleaned from quening theory in arder Lo seloup their aperational
functions so as to strike a balance between the cosl of servicing cnn-
tomers and the inconvenience to cuslomers cansed by having Lo wiil

By applying quening L

in line,

¢ Telecommunication:

The fundamental unit of telecommnunications Lradlic in voice syslemnsd

is called the Erlang. Queuing theory as an operations managemaent
technique is commonly used to detennine and stroamline stafling needs,
scheduling, and inventory in order to improve averall cuslomer serviee,

¢ Traffic control:
The application of the queuning theory is exploited 1o minimized Lhe

traffic congestion at a partieular time. By this work we find onl different
steps to avoid the congestion.

— The traffic can be reduced by increasing road eapacily

— We can provide separate lane for specifie user group,

e Health services:

In health care, quening models are generally based on Lhree nelors
and the variation within, Those [actors are patient arrival rade, server
rate (service time for exam, treatment, ete.) amd the nimnber ol servers
(clinical and nonclinical stafl) available.
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o Computer Networks:

A Queue Data Structure is a fundamental concept in computer science
used for storing and managing data in a specific order. It follows the
principle of “First in, First out” (FIFO), where the first element added
to the queue is the first one to be removed.
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CONCLUSION

This Project contained four chapters.The Preliminary which included
definition of Probability, Probability space,Outcome,Mean, Variance,
Random Variable,Binary random variables,Normal distribution, etc.

First chapter dealt with the introduction to stochastic process.A stochas-
tic process is a mathematical model that describes the evolution of a

system over time in a probabilistic manner. It consists of a collection of

random variables indexed by time, space, or other parameters. These

random variables represent the uncertain or random aspects of the sys-

tem'’s behavior, and the stochastic process captures how they change

and interact with each other over time.An examples that includes the

growth of a bacterial population, an electrical current fluctuating due

to thermal noise, or the movement of a gas molecules.

Stochastic processes are widely used in various fields such as finance,
engineering, biology, physics, and more to model and analyze complex
systems that involve randomness or uncertainty. They provide a power-
ful framework for understanding the underlying patterns, trends, and
uncertainties in data and can be used to make predictions, simulate
scenarios, and optimize decision-making processes.

There are different types of stochastic processes, including Markov pro-
cesses, Brownian motion, Poisson processes, and more, cach with its
own characteristics and applications. By studying the properties and
behavior of stochastic processes, rescarchers and practitioners can gain
valuable insights into thc dynamics of random phenomena and make
informed decisions in the face of uncertainty.

In this Second chapter, type ol stochastic process including the Bernoulli
process, Poisson random process, Brownian process,Birth and Death
process. The Bernoulli process,which is a fundamental concept in prob-
ability and statistics.We have discussed the properties of the Bernoulli
process, including the expected value, variance, and relationships be-
tween consecutive variables. how the partial sums of a Bernoulli pro-
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cess form a sequence and how they can be viewed as a Markov pro-
cess. The Bernoulli process also including Binomial random process,
Non-homogencous Bernoulli process,Random walk.The Poisson ran-
dom process which included some basic definition and propertics of
a fundamental stochastic process that models random arrivals in con-
tinuous time, characterized by interarrival times following a geomet-
ric distribution and defined by postulates. The Brownian motion, or
Wiener process, is a stochastic process characterized by normal in-
crements with specific mean and variance properties. Its elementary
properties include the Markov property and the independence of nor-
mal variates in the sum of increments, leading to normality with zero
mean and variance equal to the sum of individual variances.Birth and
Death processes, exemplified by the Yule-Furry process, offer a sim-
plified yet insightful framework for studying population dynamics and
other stochastic phenomena. While these models have limitations, they
provide a foundational understanding of how populations evolve over
time and can be extended to more realistic scenarios for further analy-
sis. The Simple Birth Process for unicellular organisms assumes that all
individuals can reproduce, leading to exponential population growth
over time. This model provides a basic framework for studying popu-
lation dynamics and growth patterns in simple organisms.

Third Chapter including Stochastic processes play a crucial role in var-
ious ficlds, including bioinformatics, neuroscience,image processing, fi-
nancial markets,ctc. where they are utilized as mathematical models
to capture random variations in systems and phenomena. The appli-
cation of stochastic processes is the analysis and prediction of complex
data patterns that exhibit random behavior.

Fourth chapter,Quencing theory including Queuing Models in Operat-
ing System,Components of Quening System,Number of Servers, Measures
of Performance for Queuing Systems,Notation for Queunes,Queue Dis-
cipline,Queuing Models and Applications of Queuing Theory. There are
four types of Quening Maodels :[M/M/1]: //FCFS Queue System,[M/M/1):
N//FCFS System (Limited queue length system),M/D/1 Queue and
M/M/e Queue.
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Queucing theory is a powerful mathematical tool that allows us to study
and optimize the behavior of waiting lines in various systems. By ana-
lyzing [nctors such as arrival rates, service rates, queue lengths, and cus-
tomer behavior, we can make informed decisions to improve efficiency,
reduce waiting times, and cnhance customer satisfaction. Qucueing
theory has applications in a wide range of industries, from healthcare
and transportation to telecommunications and manufacturing, making
it & valuable tool for improving operational performance. By under-
standing and applying Queueing theory principles, organizations can
streamline processes, allocate resources effectively, and ultimately pro-
vide better service to their customers.
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