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INTRODUCTION

Functional analvsis is the branch of mathematics where vector
spaces and operators on them are in focus. In linear algebra. the discussion is
about finite dimensional vector spaces over any field of scalars. The functions
are linear mappings which can be viewed as matrices with scalar entries. If
the functious arc mappings from a vector space to itsclf, the functions arc
called operators and they are represented by square matrices. In functional
analysis, the vector spaces are in general infinite dimensional and not all op-
erators on them can be represented by matrices. Hence the theory becomes
more complicated, but nonetheless there are many similarities. Functional
analysis has its origin in ordinary and partial differential cquations, and in
the beginning of the 20th century it started to form a discipline of its own via
integral equations. However, for a long time there were doubts wether the
mathematical theory was rich enough. Despite the efforts of many prominent
mathematicians, it was not sure if there were sufficiently many functionals to
support a good theory, and it was not until 1920 that the question was finally
settled with the celebrated Hahn-Banach theorem. Seen from the modern
point of view, functional analysis can be considered as a generalization of
linear algebra. IHowever, from a historical point of view. the theory of linear
algebra was not developed enough to provide a basis for functional analysis at
its time of creation. Thus, to study the history of functional analysis we need
to investigate which concepts of mathematics that needed to be completed
in order to get a theory rigorous enough to support it. Those concepts turn
out to be functions, limits and set theory. For a long time, the definition of
a function was due to Euler in his Introductio in Analysin Infinitorum from
1748 which read: "A function of a variable quantity is an analytic expres-
sion composed i any way whatsoever of the variable quantity and numbers or
constant quantities.”. For the purpose of this report, it is enough to say that
ihe entire focus of this definition is on the function itself, and the properties
of this particular function. What lcad to the success of functional aunalysis
was that the focus was lifted from the function, and shifted to the algebraic
properties of sets of functions — The algebraization of analysis. The process
of algebraization led mathematicians to study sets of functions where the
functions are nothing more than abstract points in the set.

This Project contains five chapters. First chapter deals with the prelimi-
naries which includes some basic definitions and examples of metric spaces,
topology,open and closed ball,vector spaces, linear functionals, linear metric



space etc. Second Chapter deals with Normed Linear Spaces and Bounded
lincar transformations. It includes the definition of norm, normed linear
space,seminorm,p-norm, Cauchy sequence, Banach space, Bounded Linear
Transformation, some propositions and one corollary. The theory of normed
vector spaces was developed in the 1920-s by Banach, Hahn and Viener (con-
crete functional spaces with a norm, without the name, were studied before
that). Their use became a standard tool Banach’s 1932 book Théorie des
opérations linéaires (Theory of Linear Operations, 1932), which flashed out
the role of completeness and systematically developed the theory of linear
operators on complete (Banach) spaces.

Third Chapter deals with the famous Hahn-Banach Theorem. This is one
of the most fundamental theorems in functional analysis and is due to Hahn
and Banach. Tt yiclds the existence of non-trivial continuous linecar function-
als on a normed linear space, a basic result necessary for the development of
a large portion of functional analysis.This chapter also includes some more
theorems.The Hahn-Banach theorem is a central tool in functional analysis.
It arose from attempts to solve infinite systems of linear equations. This is
nceded to solve problems such as the moment problem, whereby given all
the potential moments of a function one must determine if a function having
these moments exists, and, if so, find it in terms of those moments. Another
such problem is the Fourier cosine series problem, whereby given all the po-
tential Fourier cosine coefficients one must determine if a function having
those coefficients exists, and, again. find it if so.

Fourth chapter deals with Closed Graph Theorem and Open Mapping
theorem. The closed graph theorem is an important result in functional
analysis that guarantees that a closed linear operator is continuous under
certain conditions.The open mapping theorem asserts that certain continuous
linear transformations between Banach spaces map open sets into open sets.
It also includes some more theorems and examples.

The last chapter deals with Banach-Steinhaus Theorem which is another
famous theorem of Functional Analysis. It is one of the most celebrated
results in the theory of Banach spaces. This theoremn has various important
applications. It vields the existence of a continuous periodic function whose
Fourier series diverges at a given point. In this section, we shall also present
a variant of this theorem, which we call the uniform houndedness principle.
This theorem is particularly useful for the study of matrix transformations in
sequence spaces which are linear metric spaces but not normed lincar spaces.



CHAPTER-1
PRELIMINARIES

1. METRIC SPACIES

1.1 Definition: Let X be any nonempty set. A metric on A is a mapping
d: N x N - R which satisfics the following axioms: for all 2,9,z € X,

(1)d(x.y) =0
(i)d(r,y) =02a=y
(ii0)d(x, y) = d(y, )

(iv)d(x. 2) < d(x,y) +d(y.2)

The set X together with a metric d on it 1s called a metric space and is

denoted by (X,d). We usually omit d and only write X to denote a metric
space. The inequality (iv) is called the triangular inequality. A function
d: X x X — R which satisfies (i),(iii) and (iv) is called a semi-metric and
(X, d) is called a semi-metric space

1.2 Remarks: (a) A metric d is always non-negative. For x,y € X it follows
that

d(z,y) + d(y,z) > d(x,x)

j.e,
2d(x,y) 2 0

and hence
d(x,y) > 0

. (b) 2.y 2,y € X it should be noted that

|d(z,y) —d(«’,y")] < d(z,2") +d(y.y')
(c) Every nonempty set X can be made into a metric space in a trivial way.
Define d: X x X = R by
d(z,2) =0 and d(x,y) = 1lorx #y
It is easy to sce that d is a metric on X and this is called the trivial metric.

3



1.3 Examples of metric spaces

(a) For any n € N,

is a metric space with the metric d defined by

n

d(z.y) = (Z(I; — )P 2,y € R

i=1
(b) For any n € N,
CH= {'C: (*51:"':‘571) tx; € C._.(, = 1,-..,'”,}

1s a metric space with metric d,

mn
d(z,y) = O _(zi— )}z yeC”

i=1
(¢) Let C[0, 1] denote the set all continuous real valued functions defined on
the closed interval [0,1]. Any f € C[0,1] is bounded and attains its bounds.
If we define

d(f,9) = sup{|f(z) — g(x)| : = € [0.1]},

then d is a metric and C[0,1] is a metric space with this metric. Another
metric on C[0, 1] is given by

1

P(f.g) = f |f(z) — g(a)|dz

0

2. TOPOLOGY

2.1 Definition: Let X be any nonempty set. A topology on X is a
collection F of subsets of X which satisties the following axioms :
(i) @, X € F, (ii) any union of members of F is a member of F, (iii) the
intersection of finite number of members of F is a member of F.

The set X together with a topology F is called a topological space and is
written as (X, F). When there is no chance of confusion we write only .\ to
denote a topological space. The members of the topology F are called open
sets.



1.2 Examples of topology

(2) If X is a nonempty set and F consists of all subsets of X then Fis a
topology for X and this is called the discrete topology.

(b) If X is a nonempty set and F = {¢. X'}. then F is a topology for X
and this is called the indiscrete topology.

(c) Let X = R and let F consist of the null set ¢ and all open intervals
onlv. Then F is not a topology on R as it does not satisfy axiom (ii).

3. OPEN SPHERE OR OPEN BALL

3.1 Definition: Let (X, d) a metric space. Let a € X and r > 0. Then
the set

B.(a) = {z € X : d(z,a) <1}

is called a neighbourhood or an open sphere or an open ball with centre

a and radius 7.

4. CLOSED SPHERE OR CLOSED BALL

4.1 Definition: Let (X,d) be a metric space. Let @ € X and r > 0.
Then the set B.[a] = {z € X : d(z,a) < r} is called a closed sphere or a
closed ball in X with centre a and radius r.

INote: Let X be a topological space. A set G C X is said to be open if for
each 2 € G, there exists a 7 > 0 such that B,(z) C G.

A set FF C X is said to be closed if and only if its complement is open.

The interior A" of a set A is the union of all open sets contained in A.

o



5. VECTOR SPACES
5.1 Definition: A vector space or inear space over a hield Iis aset X
with mappings
(e, 9) 22 +Y

of X x X into Y .called addition, and
(N, @) = Ar

of K x I into X . called scalar multiplication, such that the following axioms

are satisfied : for x.y, z in X and A, g, in I\,
Nr+y)+z=a+(y+=z)
(ir+y=u+z

(i71) there exists an element 0 € X, called the zero vector such thata +0 =

(iv) for each x € X, there exists an clement(—2) € X, called the addi-
tive inverse or the negative of x, such that x + (=x) =0

(W)Mz+y) = A+ Ay
(vi)(\ + )T = At + pz
(vit)A(pa) = (Au)z
(viii)l.x =7

The elements of X are called vectors and those of the field A are called
scalars. A vector space X is called real or complex vector space accordind
as the field K is R or C.

5.2 Examples of vector spaces:
(a) For any n € N,
Rn = {(IL‘],:L'Q,.--?:I-‘”) ‘X € R;5 = l,l.)..,. = . ?ﬂ,}

is a real vector space with respect to addition and scalar multiplication de-
fined as follows :
T+y= (1111 | PO 0 +1n)

6



where @ = (.rl R i TR ..P',,)- Yy = (Hl -----
Similarly,
. s
(= {(;,,;;2,...,2,, P & C",'é = 1321"':”}

1s a complex veetor space.

(b) Let S denote the set of all sequences T = {z,} of real(complex) numb(t*r.s.
Then S is a real(complex) veetor space under coordinatewise linear operation

defined as follows:
{mﬂ} + {yn} = {-Tn 4 'yn}}

Mz,} = {A2n}

(c) Let X be any non-empty set and let 7 (z) denote the set of all real valued
(complex valued) functions defined on X. Then F(z) is a real (complex)
vector space with respect to pointwise linear operations defined as follows :

(f1 + f2)(2) = fulz) + fo(x)
(Af)T = ’\f(‘rv)a

for all z € X, where fi, fo € F(z) and A is real or complex.

6. LINEAR FUNCTIONALS

6.1 Definition : Let X be a complex (real, respectively) vector space. A
linear functional on X is a linear map f : X = C(f : X — R, respectively)
that is a function f defined on X whose values are complex (real, respectively)
numbers , and such that

f(ermy + cawe) = e f(x1) + caf (2:2)

if ¢, c0 € C (orif ¢, co € R respectively ).
f is said to be a real or complex linear functional according as it is real or
complex valned.

e |



6.2 Example of lincar functionals

Let V®» = OF { or R*) be lthe n-dimensional complex ( or real) vector
spacc. If by, by, ..., b, arc n fixed complex (or rcal) numbers and if , for
eNery o= ((1“._,r”) e V", we define f(r) = e + ... F b,cn, then
f is a linear functional on V" and f(("z') = bt = 1,25 vouN where ¢, =
(1,0,...,0): .65 = (0,0,...,1) is the basis of V.

7. SUBLINEAR FUNCTIONALS

7.1 Definition: Let X be a rcal vector space. A real valued function p
defined on X is called a sublinear functional if

plz+vy) < plz) + )
and

p(ax) = ap(z)

for all z.y € X and all positive real number a.

8. LINEAR METRIC SPACES

8.1 Definition : Let K denote the field R or C. Let X be a vector
space over the field K and a topological space. Then X is said to be a
linear topological space if the algebraic operations of addition and scalar
multiplication are continuous , i.e, the mappings

(#:y) +2+y

of X x X into .\ and
(M) = A

of K x X into X are continuous. The topologies on K x X and X' x X are
the usual product topologies where K has its usual metric topology defined
by the absolute value. If the topolgy of X" is given by a metric, then we speak
of a linear metric space.



8.2 Definition : Let X be a vector space over the ficld K. A para-
norm on X is a function g : X — I which satisfics the following axioms: for

T,y € X

(1) g(0) =0

(i) g(x) = g(-2)

(ili) g(x +y) < g(x) + g(y)

(iv)A = Mgz = 29 imply Az — Ao
where A, \g € C and .1y € X, in other words

A — Aol = 0,9(x —x9) = 0
imply g(Ax — Agag) — 0

(iii) is called the triangle inequality and (iv) is the continuity of scalar mul-
tiplication. A paranormed space is a vector space X with a paranorm ¢ and
is written as (X, g). We sometimes write only X to denote a paranormed
space when there is no chance of confusion. A paranorm is dsaid to be total
if

9(z) =0

implies z =0

INote: Let X be a linear space over K. A nonempty subset E of X is said
to be a subspace of X if kx + ly € E whenever z,y € F and k,l € K. If
¢ # E C X, then the smallest subspace of X containing E is

spankl = {kity + kaxa+.. .+ katn @ T1,29,...,2, € E, ki ko, ...k, € K}

Tt is called span of E.

A subset E of X is said to be linearly independent if for all B veiTn € E
and ky,....k, € K , the equation kyz; + ... + k,z, = 0 implies that k; =
;{g =...= k'ﬂ-——o.

A subset I of X is called a basis for X if spanE = X and E is linearly
independent.



8.3 Examples of lincar metric spaces

(a) 1(p) is a lincar metric space with the total paranorm g defined by
; PR\ /M
g(x) = () _lzel™)
k

where M = max (1, sup px)

(b) cy(p) is a linear metric space paranormed by g defined
by  g(x) = sup |z M

9. HOMEOMORPHISM

9.1 Definition: Let (X,T) and (Y,U) be topological spaces, and let
f: X — Y be a bijection. f is said to be a homeomorphism if f is continu-
ous and its inverse f~! is continuous.

9.2 Examples of homeomorphism:

1) A function f : X — Y where X and Y are discrete spaces is a homeomor-
phism if and only if it is a bijection.

9) Let X be a set with two or more elements, and let p # ¢ € X. A function
f:(X,T,) = (Y,T,) is a homeomorphism if and only if it is a bijection such
that f(p) =g.

10. PARTIALLY ORDERED SET

10.1 Definition: Let X be any nonempty set. A partial order relation
in X is a relation < such that for all x,y, 2z € X we have

i)z <=

(i) 2 <yand y <whmply w =y

(ifi) z <yandy < z imply z < =

A nonempty set X with a partially ordered relation defined on it is called
partially ordered set.

11. ZORN’S LEMMA

If X is a nonempty partially ordered set such that every totallv ordered
subset of .X" has an upper bound in X. Then X" contains a maximal element.

10



12. LINEAR MAPS

12.1 Definition: Let N and Y be lincar spaces over .
from X to Y is a function I7: X = Y such that

A linear map

F(ayky + aake) = Rk F(ry) + ko F(r2)
for all vy, 20 € X and ky, by € &, Two important subspaces are associated
with such a map. The subspace

R(F)={yeY:Flz)=y for some x € X}
of Y is ealled the range space of F. The subspace

Z(F) = {x € X : F(z) = 0}

of X is called the zero space of F.

Closure: Let X be a topological space. The closure Aofaset AC X is
the intersection of all closed sets that contain A.

Nowhere Dense and Dense: Let X be a topological space. A set
A X is said to be nowhere dense if A has empty interior. A C X is said

to be dense in X if A=X.

13. THE FIRST AND SECOND
CATEGORY OF METRIC SPACES

13.1 Definition: Let (X, d) be the metric space. (X, d) is said to be of
The First Category if X is equal to the union of a countable collection of
nowhere dense subsets of X. (X, d) is said to be of The Second Category if
X is not of The First Category.

14. BAIRE CATEGORY THEOREM

Let X be a metric space. Then the intersection of a finite number of dense
open subsets of X is dense in X'

If X is complete, then the intersection of a countable number of dense open
subsets of X is dense in X

11



CHAPTER-2

NORMED LINEAR SPACES AND
BOUNDED LINEAR TRANSFORMATIONS

Let X Dbe a real or complex vector space of finite or infinite dimension.
Lot ¥ be the field R of real numbers or the field ¢ of complex numbers.
When the scalar field is not specified, then it is understood that the results

arc valid for both cases.

2.1 Definition: A norm on X is a real function ||| : X = R defined
on X such that for any z,y € X and for all A € I,
(Dl =0
(2) llx + yll < llell + llyll
(3) A2l = [Alllxll
(4) ||z|| = 0 implies x =0

2.2 Remark: The following are the immediate consequences of the
definition of a norm:
(1) Take A = 0 in property (3), then ||0]| = 0; hence property (4) can be
stated as follows :
|z]| =0iff =0
(b) Take A = —1 in property (3), then || — z|| = [|z||, in particular
ly—z|l = llz-yll
(¢) Note that
=l = llylll < llz=yll
It follows from property (2) that
lzll = llyll < llz = yll

Writing x in place of y in the above inequality. we get

lyll = [lz]| < |ly—=|
Thus
llzll = llyll = =llz-y||

12



Hence,
—N-yll < llxll =l < llx = yll

as required.

2.3 Definition: A normed linear space is vector space with a norm. Ve

shall abbreviate normed linear space as nls.

2.4 Definition: A seminorm is defined by omitting property (4) in .t,he
definition of a norm. This concept is important in the theory of topological

vector spaces.

A p — norm is defined by replacing the property (3) in the definition of a
norm by the following one:

1Azl = |APll]l
Note that a p — norm with p =1 is just a norm.

2.5 Examples:

(a) R™ is a nls with the norm defined by

T

2

lzll = (Q_l=l*)
j=1

Similarly C" is a nls with the norm defined in the above manner.

1/2

(b) C(S) is a nls with the norm
IfIl = sup{|f(x)| : = € S}

(c) A, the set of all complex functions analytic on {Z € C : |z| < 1} and
continuous on {z € C : |z| <1} is a nls with a norm

171l = max|f(z)]

|z]|=1

2.6 Proposition: Every nls X is metric space. relative to the natural
metric d defined by
d(z,y) = |ly—=|
for x,y € X. Furthermore , for any x,y,z € A and for all A € K, we have

Il = d(0, z)

13



as well as
(a)d(z + z,y 1 z) = d(x, y)
(D)d(Na, Ay) = |Ald(x.y)

Property (a) is called translation invariance

Proof: 1t can be easily verified that the axioms for a metric hold good.

FFor example, |
d(x, z) < d(z.y) +d(y, z)

follows immediately by writing

s—z=@-2)+2-y)

so that
lz =x| < lly = = + 1z — vl

Proof of (a)
dlx +2,y+2) =|(y+2) — (x+2)|

= lly = 2]l = d(z,)

Proof of (b)
d(x, Ay) = || Ay — Az||

= | My — =)||
= |Mlly = =||
= |Ald(z,y)

2.12 Proposition: Let X be a normed space. The mappings
1) (z,y) EXxX—sax+yeX

2) (A1) eKx X AreX

3) (z,y) EX x X = d(z,y)=|ly—«| € R

NzeX |zl eR

are all continuous.

14



e y
[?Uﬂf S We prove each part seperately

1) Let (a,b) ¢ X x XN be an arbitrary point, 50 that a + b 1s its 1mage.
In order to prove that the “”ll]pi]”"': is continuons al, (ﬂ._‘ ?}) ; it 1s sufficient to
show that piven ¢ > 0, there is a d > 0 such that for every = € Bgla) and
every y € Hy(b), we have o 4y € B(a+0). In other words, we must show
that, given ¢ > 0 there is § > 0 such that

(x4 y) (a4 Db)|| <e
Whenever

| = al| < & and ||y = b]| < 0
Taking & = (§), we have
1@+ 9)-(a+ B < Iz — all + ly —bll < 6+8 = ¢

(2) Let @ € K and ¢ € X be arbitrary. To prove that the mapping is
continuous at (v, a ), we must show that, given ¢ > 0, there is 4 > 0 such

that
| Ae-aal < €

Whenever
A—a|<d fz—a] <9

. We have the identity
Ar—aa = (A-o)a + o(z—a) + (A-)(x-a)
which yields
hz-aal| < M-alllall + lallz - al| + A - alllr - a]
Hence, choosing d > 0 sufficiently small, we get
|Az—aal < éllal| + |a]d+d; <€

(3) In this case, the function is the metric of a metric space. It follows from
the property of metric spaces that the metric is continuous.

(4) Setting y = 0 in case (3), we obtain the function in case (4), which
is continuous because the function in case (3) is continuous. This is due to
the fact that a function which is continuous as a [unction of two variables is
continuous in cach variable separately.



2.13 Proposition: Every nls is a linear metric space with respect to
the natural metric defined by d(z,y) = |ly — zl/-

Proof: This follows from Proposition 2.6 and parts (1) and (2) of Propo-

sition 2.12

2.14 Corollary : Leta€ X and a € K,a # 0. Then the mapping
reXdar+a€eX
is a homeomorphism of X onto itself.
Proof : 1f a = 1, we have the translation
r—=z+n0a
This mapping is continuous by part (1) of Proposition 2.12, letting y = a.

If @ = 0, we have 2 — az, which is continuous, as can be seen by setting
A = « in part (2) of Proposition 2.12.

The mapping £ — ax + a, being the composition of the continuous map-
pings z — ar and x — r + a, is also continuous.

Now,

1 —a
r=-—-y+—
13 w

if y=azx+a.
It follows that £ — az + a is a bijection of X with itself, with inverse.

1 —a
g4 =Y —
« Q

Since the inverse has the same form as the given mapping, it is also con-
tinuous. Hence, x — az + a is homeomorphism.

2.15 Definition : A sequence {z,} in a nls X is a Cauchy sequence if
for every € > 0 there exists ng € N such that ||z, — z,,|| < € for n > ny.

16



) s : . a 3 Q
A series Y a,, a, € X, is said to be convergent to @ € X if the sequence

==
n " . ‘ 5
()f l)i]|'ti;]] S1ImMs {3”}‘ “'h()rc Sy = L a,, (:()n\'(.‘l'g(:s Lo X, 1.€. lf f()r every & ar
1=1 e
there exists 1, € N such that ||s, — x| < ¢ for n. 2 no. A series 37 ap 18

n=1

o
said to be absolutely convergent if 3 |a,|| is convergent.

n=1

Note that every nls X is a metric space and hence every convergent se-
quence in it is Cauchy, but not conversely.

2.16 Definition : A nls X is said to be complete if every Cauchy
sequence in X converges to an element of X. A complete nls is called a
Banach space.

2.17 Example : All the nlss given in the Example (2.5): R", C",
C(S), A, 1,, 1, ¢, ¢y are Banach spaces.

Example for Cauchy sequence : Let z, = *, then {z,} is
Cauchy.

Example for Banach space : One of the simplest examples of
a non trivial Banach space is C(k, k), the space of continuous maps from a
compact space k to k,. with k = C or R.

BOUNDED LINEAR TRANSFORMATIONS

We shall first introduce the concept of bounded linear transformations.

2.18 Definition : Let k denote the real field R or the complex field
C and let X and Y be normed linear spaces over k. A linear transformation
T from X and Y is said to be a bounded linear transformation if there exists
a constant A/ > 0 such that,

|Tz|| < M||z|| for cvery r € X

In the above inequality ||z] is the norm of 2 in X and ||Tx| is the norm
of Tz in Y. It will frequently happen that several norms occur together
. T,

17



but we will use the same symbol for all the norms. Seeing, the nature of the

discussion the reader can clearly distinguish between different norms.

If T is a bounded linear transformation, the norm of T is defined by
| 7|
[

It may be noted that we can restrict ourselves only to z € X with |z =1
without changing the supremum, since for « € I

cx€ X,z #0)

171l = sup{

IT(ex)|| = laTz|l = || Tx]|
Therefore, the norm of T can be defined by
IT|| = sup{[ITz| : # € X, ||l=ll = 1}
Also, it may be noted that

IT|| = inf{M : M > 0, Tz|| < M||z||} forallz € X

In other words,

ITz]l < I Tzl for all z € X

If T is a bounded linear transformation from a normed linear space X
into itself, then we call T’ a bounded linear operator. A bounded linear trans-
formation from X into the field K is called bounded linear functional; it is
called a real or complex bounded linear functional according as K is the real
field R or the complex field C.

2.19 Examples: (a) The identity operator I : X — X on a normed
linear space X # 0 is a bounded linear operator with a norm |[|/| = 1.

(b) The zero transformation 0 : X — Y on a normed linear space X is a
bounded lincar transformation and has the norn ||0|| = 0.

(¢) The norm ||.|| : X —> R on a linear space X is not a linear functional;
it is a sublinear functional.
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CHAPTER - 3
The HAHN-BANACH THEOREM

In this chapter we shall prove the famous Hahn banach theorem. This
is one of the most fundamental theorems in funct ional analysis and is due
to Hahn and Banach . It yiclds the cxistence of nontrivial continuous lin-
ear functionals on a normed linear space ,a basic result necessary for the
development of a large portion of functional analysis .Moreover . it is an
indispensible tool in the proofs of many important theorems in analysis.

3.1 The Hahn-Banach Theorem: Let E be a real linear space
and let M be a lincar subspace of E. Supposc p is a sublincar functional
defined on E and f a linear functional defined on M such that f(z) < p(z)
for every € M, then there is a linear functional ¢ defined on E such that ¢
is an extension of [ (i.e g(x) = f(x) for all 7 € M ) and g(2) < p(a) for all
= O3

P?‘O()f: Let F denote the set of all real functions h, such that h is linear,
dom h is a linear subspace of E .h is an extension of f and h(z) < p(z) for
all 2 € dom hSince f € F.I° # ¢. We write f C h to denote that h is
an extension of f. Notice that F is a partially ordered set with respect to
partial order C. Let C be any chain in F and let h =UC . Then h € F,
therefore from zorn's lemma it follows that /' has a maximal element say
g. We complete the proof by showing that dom g = E. Assume that this is
false i.e Jlet dom g = G C E, let y be any element in E N G¢, define

H={r+ay: zcG. acll}

Clearly H is a linear subspace of £ and G C H ,let ¢ be a fixed , but
arbitrary , real number define 2 on H by

h(z+ay) = g(z)+ ac

Now if 1 + a1y = 72 + agy, where z;,2, € G and aj,ay € R then
(v — as)y = w9 — 21 € G so that oy = a9 and z; = x5). Hence h is well
defined .Clearly h is linear and g C h. \Ve now claim that a ‘¢’ can be selected
so that h(x) < p(z) for all r € H: then we have h € F, which contradicts
the maximality of g and completes the proof of the theorem, therefore,we
need only to establish that ¢ can be so selected |, to justify our claim, s
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our requirement is that ,

a(z) + ac = h(z +ay) 2 p(x = ay) forallv € G,a € R.

Since ¢ is linear and p sublinear .it is equivalent to requring that

y(fi) +e<plea+y) fore € G and @ >0
a
and

g(ﬁ) +c< —p(—xa—y) for T € Ganda <0
=

Therefore it suffices to have
o) — plu—y) S e < —g(v) +p(o+y) for wvEG
but we do have
g(u) + g(v) = g(u+v) < plu+v) S plu—y) +pv+y)
for all 1w, v € G.\Write

a=supg(u) —plu—y):uelG

b=inf—gv) +plrt+y):veqG
It is clear that a < b. Now any real number ¢ such that a < ¢ < b satisfies
our requirements.

3.2 Theorem : Let E be a real normed linear space and let M be
a lincar subspacc of E. If f € M~, then there is a g € E* such that f C g

and|lg] = [|f]-

Proof: Define pon E

p(z) = [ fll|lz]

Then clearly, p is a sublinear functions on E and f(z) < |f(z)] < p(a) for
all € M. therefore , it follows from Theorem(3.1) that there exist a linear
functional g on E such that f C g and g(z) < p(z) for all 2 € E, clearly
g€ E™and gl < [|f]]- Also
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lgll = supilg(x)] = wck, ||=ll = 1)
> sup{lg(x)] : we M. |lr]l = 1}
sup{|f(x)| : we M, 2]l = 1}
= I/l

Therefore ||g||=||f|| and this completes the proof.

3.3 Theorem : Let E be complex linear space and let M be a linear
subspace of E, suppose g is a seminorm on £ and f is a linear functional
defined on M such that

|f(2)| < q(z) forall z e M
Then there is a linear functional g on E such that f C g and

lg(z)| < gq(z) forallz € E

Proof: Let for each x € M ,write f(z) = fi(x) +if2(x). An easy computa-
tion shows that f; and f, are real linear functional on M, it is also obvious
that for 3 =1,2

|fi(@)] < [f(2)] < g(z)
for all z € M . Now we regard E and M as real linear spaces and apply

theorem(3.1) to obtain a real linear functional g, on E such that f; C g, and

91 ()] < g()

forallz € E
Now define g on E by the rule

9(z) = gi(z) —ig1 (i)
It is casy to scc that g is a complex lincar functional on E . Further , for
I e Aw,
g (1) +ifa(ix) = fi(iz) +ifa(ia)
= f(iz) = if (2)
= —fa(z) +ifi(z)
= — fo(x) + igy(x)
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so that gy (72) — [i(x) and therefore
g(x) = g(w) — g (ix) = Jilz) +ifalr) = [(z)
thus f C ¢ it remains only to show that
lg(z)| < q(x) for all T € I

Let o € I be arbitrary . Write g(z) = reap(if),r > 0,0 € R.

19(2)| = r = eap(—i0)g(x) = g(exp(=i0)T)
= g1 (exp(—i0)x = q(exp(—if)x)
= |exp(—if)|q(x) = q(2)
This completes the proof.

3.4 Theorem: Let E be a complex normed linear space and let M be
a lincar subspacc of E. If f € M*, then there cxist g € E* such that f C g

and [|gll= |l 1l-

This can be obtained from 3.2 and 3.3.
We now present some results which are applications of Hahn banach theo-

rerr.

3.5 Theorem : Let £ be a normed linar space over K and let S be a
linear subspace of E. Suppose that z € E and dist (z,s)= d > 0, then there
exists g € E*such that g(5)=0,9(z),9(2) = d and ||g||=1.

Proof: Let
M=z+4+az:z€85ac K

Then clearly M is a linear subspace of E' define f on A by
f(r+az)=ad

Clearly f is a well defined linear functional on M .Also f(S)=0 and
f(z) = d .Further

11l = supg &+ 22l

= izt azeM||r+az 0
e+ azl] lz + az[| # 0}
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= sup{ jad] g +az€ M,||z+az| # 0}
|z + az||
d
= STl ye5
_ B
d

Thus f € M*, now by applying theorem 3.2 or 3.4 as the case may be , we
obtain a functional g € E* which satisties the requirement of the theoremn.

3.6 Corollary: Let E be a normed linear space and Jet, =z be a non zero
vector in E . Then there exists functional g € E* such that g(z) = ||z]| and
llgll = 1.

Proof: Take S =0 in theorem 3.5.

This answers the question raised in the previous section that if E is a
nonzero normed linear space , then there exists a non zero element in £*.

3.7 Discussion:

If E is a normed linear space ,then there exists a natural mapping from
E into E** . Each cloment z € E gives rise to a functional F, in E** dcfined
by

Fo(f) = f(=)

For f € E* . We denote the natural mapping x — F, from E into E*" by 7.
A simple computation shows that F; is a linear functional on £*. Further
more ,

| Fe Nl = suplF.(N)] = 1] £ 1
= sup|f(z)|: |/l £1
< sup||fllllz]| - [[/]] £ 1
< |||l

Thus F, € E** and 7 is well defined. Also the mapping 7 is linear and since

(@)l = 1 Fell < [l

it follows that 7 is a bounded linear transformation from E into E** with
Il < 1
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CHAPTER - 4

CLOSED GRAPH THEOREM AND
OPEN MAPPING THEOREM

Before stating our main theorem, we prove a crucial preliminary result

4.1 Lemma: Let X be a linear space over (. Consider subsets U and V/
of X, andv k € K such that U C V + kU. Then for every z € U, there is a
sequence (v,) in V" such that

€X — (Ul + k'f_’z 4+ ... + kn_lb'”) (= an: g f i— 1’2’ s

Proof: Let x € U. Since U C V + kU, there is some v, € V/ such that r — v,
is in AU. Let n > 1 and assume that we have found vy,v2,...,Un in V as
stated in the lemma. Then z = v +kvo+ ...+ k" v, + k™u for some u € U.
Since u = v,47 + kug for some v,4, € V and uy € U, we sce that

r— (v; +kvy+ ...+ K'vpa U
Thus we inductively obtain a sequence (v,) in V.

4.2 Closed Graph Theorem: Let X and Y he Banach spaces and
F : X = Y be a closed linear map. Then F is continuous.

Proof: 1t is enough to prove that F' is bounded on some neighbourhood of
0. For each positive integer N, let

Vi={zeX:||F(x)| <n}
We prove that some V, contains a neighbourhood of 0 in X. Now
o0 o
X=| =¥
n=1 n=1

where V! denotes the closure of the set 1, in X. Hence

(V) =¢
1

n=

! s ; - .
where (V)¢ denotes the complement of the set V! in X. Since X is a Banach
space, one of the open sets (V)" must not be dense in .X.
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Hence we find a positive integer p , Some Io € X and é > 0 such that

U(2o.6) C V. We shall show that U(0,8) C Vip.

First note that U(0,9) C V5, For if. 7o € X with ||| < d, then T + zo €

U(xg.8) C V7. Also a9 € V. If (v,) and (wy,) are sequences in V}, such that

, ; / Ince
vy = T + T and w,, = T, then vp — Wy = T, W here v, — wn = Vap SINCE

1F(n — wa)ll < [Pl + 1 (wa)ll < 2P

Thus x € Vj,. In particular, for every o € U(0,4), there is some z, in Vap
such that ||z — x| < §/2. Henee

U(0,8) C Vap + (1/2)U(0,8)

Consider = € U(0,0). Letting U = U(0.8),V = V3, and k = 1/2in 4.1, we
see that there is a sequence (1) in Va, such that

2 — (0 + V)24 ...+, /277) € (1/27)U(0,6)
foreachn=1,2,.... Let
w,=v1+vaf2+ ...+ 1!,1/2"'_1,?7 =1,2,: .

Since ||z — wa|| < 6/27, it follows that w, — z in X. Also for all n > m, we
have

T

FCY v/270 < Y IF@)I/27 < d4p/2m

j:ﬂ&+1 j=n¢+'|

|F(wn) — F(wm)ll =

Hence (F(w,)) is a Cauchy sequence in Y. As Y is a Banach space, (F(w,))
converges in Y, and as F is a closed map, we sce that F(w,) = F(z) inY. If
we let m = 0 and wy = 0, then ||F(w,)|| < 4p for all n > 1 by the calculation
given above. Hence

|F (@)l = Tim [[F(wn)] < 4p

. Since = € U(0,4) is arbitrary. we see that U(0,4) C Vi,. Thus the Linear
map F is bounded on the neighbourhood U(0, ) of 0.

We consider an interesting consequences of the closed graph theorem. A lin-
car map P from a lincar spacc X to itsclf is called a projection if P2 = P. If
P is a projection jthen sois I — P and R(P) = Z(I — P). Z(P) = .

. It follows that ( )-Z(P) = R(I - P)

X =R(P)=Z(P)and R(P)NZ(P) =0
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Conversely ,if Y and Z are sub-
— 0, then for every € X there
y + z .s0 that the linear map is
d the projection onto Y on Z.

For every projection P defined on X .
spaces of X such that X =Y +Z and YNZ
are uniques y € ¥ and z € 7 such that £ =
given by P(z) = y is a projection It is calle

The closedness and the continuity of a projection can be determined by
the closedness of its range space and zero space .

4.3 Theorem: Let X be normed space and P : X — X be a projec-
tion .Then P is a closed map if and only if the subsequence R(P) and Z(P)
are closed in X . In this case P is in fact continuous if X is a Banach space.

Proof: Let P be a closed , yn € R(P), then yp = ¥ ,2n = = in X . then
P(z,) — yn = ¥, P(2,) —0— 0 in X so that P(y) = y and P(z) = 0. Thus
y € R(P)andz € Z(P), showing that the subscquence of the R(P) and Z(P)
are closed in X .

Conversely ,Let R(P) and Z(P) be closed in X, z, = v and P(xa) = ¥
in X . Since R(P) is closed and P(x,) € R(P) we see that y € R(P). Also
since Z(P) is closed and z, — P(x,) € Z(P) we sce that £ — y is in Z(P).
Thus = = y+ z with y € R(P) and z = v —y € Z(P). Hence p(z) =y
showing that P is a closed map .

If X is a Banach space and the subsequence I( P)andZ(P) are closed then
by the closed graph theorem the closed map P is in fact .continuous .

We remark that if X is a linear space and Y is a subspace of X | then
{here exists a projection P defined on X such that R(P) =Y. For it ,if a
basis y for Y is a extended to a basis y, U 2; for X and we let Z = spanz,
then clearly X =Y + Z and Y N 2z = 0 showing that the projection is onto
Y along Z . Now if X is a normed space and Y is a closed subspace of X
_ Does there exists a closed projection defined on X such that R(P) = Y7
Such a projection exists if and only if there is a closed subspace of Z of X
such that X =Y +Z and YN0 . In this case Z is called a closed complement
of Y in X It is known as that ¢y has no closed complement in I, and that
C(]0,1]) has no closed complement in B([0.1]) on the other hand , if Y is
a finite dimensional subspace of a normed space of X | then there exists a
closed complement of Y in X .

We pass on to consider the closcly related result known as the open map-

26



ping theorem. A map F from a metric space X to a metric space rEa

to be open if for every open setE in X its image F(FE) is o'pen_illl Y' .Note
that a map F is continous if and only if for every open set E in Y |its inverse
image F~!(E) is open in E .

4.4 Theorem : Let X and Y be a normed spaces and F: X — y be
linear .Then F is an open map if and only if there exists some 7 > 0 such
that for every y € Y . there is some r € X with F(x) =y and ||z|| < v1|yll-
In particular if a linear map is open , then there is surjective .

Proof: Let Fbe a open map. Since U,(0,1) is open in X the set
F(U,(0.1)) isopenin Y . As 0 = F(0) € F(ur(0,1)), here exists some

~ > 0 .Hence there is some r; € U,(0,1) such that Fiz1) = fﬁ Letting

— lyll-1

£ == We sce that F(r) =y and | :||;|—:-;:—

Conversely ,assume that for every y € Y there is some z € X with
F(2) = yand ||z|| € ~|ly|| for some fixed v > 0 .Consider an open set E
in X and 2o € E. Then U,(rg.7) N E for some 6 > 0. Let y € Y with
lly — F(xy)|| < %By hypothesis |, there is some z € X such that F(z) =
y — F(xo) and ||z|| < é|ly — F(xo)!|. Theny = F(X) + F(zo) = F(x + xp)
where o419 € U,(zg,8) € E. since ||x|| < . Thus Uy(F(x“),% € F(FE).Hence
F(E) is an open set in Y. We conclude that I is an open map.

4.5 Theorem : Let X and Y be a normed spaces.

(a) If Z is a closed subspace of X then the quotients map @ from X to
i is continous and open .
(b) Let F': X — y be a linear map such that the subspaces Z(F) is closed
in X. Define F : z&5 — Y by F(z + Z(F)) = F(z) for X € X. Then F is
an open map if and only if /7 is an open map.

Proof: (a) The map Q is continuous because |||Q(x)||| = |||z+Z]|| < ||z||
for all r € X. To show that the linear map Q is an open. We use the results
given in 4.4 . Consider any € > 0 Let x + Z € -}— Then

inflle+:z|[:2€ Z =|llz+ Z||| < (14 ¢)|||lz + Z|||
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So that there is some 20 € Z with ||z -+ 2| < (1 + e)||lx + 7 [|. Since
Q(x+ ) = x4 Z we can lety = 1 + € in 4.4 and conclude that @ is an open

map.

(b) Since Z(F) is a closed subspaces of Xﬁ is a normed space in the
quotient norm. Let Q : X — ?T\P_) be the quotient map. For £ € X \We have
F(E)+ F(Q(E)). As the map Q is open by part (a), it follows that F’ is open
wlienever F is open . For E € |fracez(F) wehave F(E) = F(Q-"(FE)),since
the map Q is surjective . As the map ( is continuous by part (a) it follows
that F' is open whenever F' is open.

4.6 Open mapping theorem: Let X and Y be the banach space
and F : X — Y be a linear map which is closed and surjective .Then F is
continuous and open.

Proof: By the closed graph theorem, F is continuous.Also Z (F') is closed
in X and that the map F’ : 7{—% — Y is continuous , where F'(z + Z(F))
=F(z),z € X. In particular F" is a closed map . Clearly it is injective. Also
since the map F is surjective ,s0 is FV . Thus F” is a bijective closed linear

map . Hence it is an inverse map G' : Y — 7% is closed and linear . As
Y and =% are banach spaces , the closed graph theorem shows that G’ is

Z(F)
COI’ltinllOI(lS; that is F” is open. F' is an open map.
We consider an application of the open mapping theorem to the solutions
of opcrator cquations. Let X and Y be banach spaces and F' € BL(X,Y).
Suppose that for every y € Y, the operator equation

F(z) =y

has a solution in X, that is the map F' is surjective . Then there exists some
~ > 0 such that for every y € Y, the above mentioned operator equation has
in fact , a solution z in X whose norm is at most +v||y|| .This estimate on
the norm of a solution in terms of the norm of the so called free term of the
equation is important in many situations,
One such situation occurs when although a unique solution is known to exist
in X for every y in Y onc is able to find the such a solution only for y
belonging to a specified dense subset Eof Y. If y €Y but y ¢ E, then —_
may find a sequence (y,) in E such

that y, — vy and a sequence (z,,) in X such that F(z,) = y,,n=1.2... ..
A natural question arises whether the sequence (x,) will converge to the
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i = " Tha anewer 1S ] A ¥ (.-.Ve
unique element x of .\ such that I (z) = v I'he answer is in the affirmati

Jfor

F(.'I‘ 'rfl) = ]'1(.1'.') = ]:(""H) =Y —Yn
so that ||z — r,|| € 1]ly — ynll = 0 as n = . [lence 2, can I)fz called m’l
approximate solution of F(«x) = y. This also shows that the solutions &« € X
corresponding to y € Y depends continuously on y. We have , therefore
established the validity of the perturbation technique used in the theory of
operators equations .It consists of changing the free term a little bit and

admitting a small change in the solution .
Lot us describe a concrote case. Consider an mn'h order nonhomogencous
linear ordinary differential equation with variable coefficients:

am (V2™ (1) + .- + ao(t)z(t) = y(t), t € la.b]

where each a; € C([a.b]) and anp(t) # 0 for every t € [a.b] . Also consider
the initial conditions

z(a) =7'(a) = ... =z"(a) =0
where0 < k < m — 1 it is well known that for every y € C([a,b]), there
is a solution of the above mentioned diferential equation which satisfies the
initial conditions and such a solution is unique if k =m — 1.
Suppose that k =m — 1, let Y = C([a,D]) and
X ={zre C™([a,b)) : g(a) = i.... = 2™ (a) = 0}

for r € X let
Flo) =™+ ... a5

then F : X — Y is linear and bijective .Also if we consider the sup norm
||locon Y and the norm given by

”3” - ”3'”00 + ...+ ”-rm”m

on A, then X and Y are banach spaces and F € BL(X.Y) since

IP()llse < (llanl-00 + o + llaollo)ell, « € X

Let £ denote the set of all polynomials onfa, b] and suppose that for every



P € E we are able to find the unique clement 2 of X such that F'(z) = p.

For convenience et a = 0 and b = 1. Consider a continuous function y

on [0, 1] which is not a polynomial. For n = 1,2,3,..., let

pu(t) = Z ;r;(k)(%)ﬁ""(l — )"k, 1eo,1]

n
k=0

As we know ,||p,, — 4| — 00 as n — o0o. For cach n find (x,) € X such that
“m-'r:i? + ...+ @GyTn = Pn

By what we have seen before Lit follows that the sequence (z,) converges in
X to the unique element « in X such that

A" + ...+ =Y

In other words, the approximate solution () of the initial value problem
converges to the exact solution X uniformly on [a, b],and so docs j** derivative
)l tox?j=1,...,masn— oo

Similarly ,consider the multi point boundary value problem

k) 2™ () + o o F @plt)x(t) = ylt); =(ty) =... =a(t,;) =0

wherea =1, <... < t,, =band ay, ..., a, are continuous functions on [a, b].
Assume that for every y € C([a,b]), there is a unique solution x € C([a, b]).
Approximations to such a solution can be found as in the case of an initial
value problem . The theory of numerical solutions of differential problems is
based on this tecnique.

4.7 Examples: e give several examples to show that the closed graph
theorem and the open mapping theorem may not hold if the normed spaces
X and/or Y are not Banach spaces.

(a) Let X =Y = ¢0 with the norm ||||l. We have scen that ¢,0 is not a
banach space . For x = (2(1),2(2),...) in X, let

F(x)(3) = jz(j),j = 1,2,....
Then F is a linear mapping from X to Y , also F is closed . To see this Tat
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(zn) = 2in X and I'(a,) = y in Y, then for every fixed j = l., % ey Bnld) =
2(j) a5 11 — coso that, jza(s) = F(a)(j) converges to jz(j) as well as to
y(7)-thus y(j) = jx(j) = F(x,)(j) converges 1o ju(j) as well as to y(7),
thus y(j) = ja(j) for all j = 1,2,.., that is Y = F(z). However F is not
continuous ,because if we let z, = (0,...0, 1.0.0..) where 1 occurs ouly in the
nth entry , then || X, |l = 1 but || F(2n)llec =1 — 00

F'y)) = 5’(—’?1,!; eX,j=12,..

is continuous since |[F~(y)|loe < |Yllos for all y € Y . Thus f7!is a closed
linear map ,which is also surjective. But it is not an open map since F' is not
continuous.

Next ,consider P : X — X defined by

P(z)(2j — 1) = z(2j — 1) +j=(27)

;and P(z)(25) = 0

forz € X and j = 1,2, ...4. Then P is a linear and P2 = P. Also,R(P) = {z €
r:z(2j) =0forj=1,2.}and Z(P)=z € X: z(2j — 1) + jz(2j) = Ofor
j = 1,2,.... are both closed suhspaces of X . Hence P is a closed map
However ,P is not continuous since if we let z, = (1,....1,0,0....) where 1
oceurs in the first 2n entrics ,then ||z,]|ec = 1 ,but |[P(z,)]|s = n+ 1, which
tends to the infinity as n — oo.

(b) Let X = C*([a,b]) and Y = C({a, b]), both with the sup norm |||| ,then Y
is a banach space , since X is a proper dense subspace of Y, .X is not a banach
space for z € X let F(X) = 2/, the derivative of z,then F': X — Y is clearly
linear. Also .it is a closed map. To see this ,let 2, = x in X and 2], — y in
Y . Since convergence in the sup norm is nothing but uniform convergence
.an elementary theorem in analysis shows that z is differentiable on [a,b] and
¢! =y, that is y = F(x). However ,F is not continuous ,because if we let
Tn(l) = [(t—a)/(b—a)]";t € [a,b], then |[T,]e < 1 but ||[F(2)||e =1 — .
This is prime example of a closed linear map which is not continuous . Many
differential operators fall in this category. .

(c) Let X = C'([a,b]) with a norm given by [lz]| = ||lz|lo + ||2/||nc and
Y = C'([a,b]) with the sup norm .Then it is can be seen that X is a banach
space but Y is not. Forx € X, let F(x) =z,then F: X -2 Y is clearly
linear. Also it is continuous since

1F (@)l = Zlloo < l2]loo + (|2l oo = ||])
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-1 .
i inverse map 77 :
for all x € X .However F is not an open map since the inverse f
Y — r discontinuous.
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CHAPTER 5
BANACH-STEINHAUS THEOREM

anach-Steinhaus theorem
theory of Banach spaces.
iclds the existence of a
n point.

Illl this section we shall present the famons B
\\‘lm‘h is one of the most celebrated results in the
This theorem has various important applications. Ity

continuous periodic function whose Fourier series diverges at a give
is theorem, which we

In this section, we shall also present a variant of th
arly useful

(“ull the uniform boundedness principle. This theorem 1is particul
for the study of matrix transformations in sequence spaces which are linear

metric spaces but not normed linear spaces.

r‘ .
9.1 Banach-Steinhaus theorem: Let {71} be a nonvoid fam-
‘?." of bounded linear transformations from a Banach space X into a normed
linear space Y. If sup || Tha|| < oo for each ¥ € X, then sup | T3] < oo.

Proof: For each positive integer n, define
Fo={r:2z € X and ||Tiz|| < n for all i}

Fn is clearlv a closed subs . ., X ) N
arly a closed subset of X and X = |J F,,. Since X is complete
n= ?

by the Baire category tl :

0 . cate heorem ' s '

b iR Ry o gory the , one of the Fy,’s, say F,,, has a nonempty
. Thus F,, contains a closed sphere Sy with centre ry and radius

. 3 ol 1 | )

ro > 0. Hence each vector in each of the sets T;(Sg) has norm less than or

()qm?;‘l(‘)gnu? ie., ||Thx]| € ng for ¢ € Sp and for i = 1,2,... . We write this
as i < f g = 1 o - i . &
T2 (S < gr? ori = 1,2, ... . Since Sp is a closed sphere with centre xg

and radius rp. =221 4 o .
adius rp, ==+ is the closed unit sphere S. Since x € Sy, it is evident that

¥

|73(So — xo)|| £ 2n0

This vields ||T1(S)|| < 20 Ylence |IT 9
: = & BB L e .
pletes the proof. g |ITh]| < <% for every i and this com-

?).2 Remark Note that Banach-Steinhaus theorem need not b .
is not complete. To observe this, let e true if X

X = {(3'1,.172. ...,3',1,0.0. ) DLy E 1?, N — 1,2,...”}
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Then XC I,. Define T}, : X' = [, lincarly by

T, (e)) = { 0 ,i#n

.,?’(3?1 ‘]?T =il

where ¢ is a sequence with 1 in the i'* place and zeros elsewhere.

k r 3
Then for z = 3. zi¢;, T,(x) = 0 for n > k. Hence supi<ncoo |Tuz| is
finite. -
But
I Tnll = 7
and

S'prfs,,(m“Tn“ = OC.

5.3 Uniform boundedness principle:
Let {P;} be a collection of real lower semi-continuous functions defined

on a second-category metric space X. If

pi(z) < M(2) < oo forall z € X and all i

then there exists a sphere S in X and a constant M such that
pi(z) < M for all z € X and all i

Proof: For each p; and each positive integer m define

E(m,p;) = {z,pi(x) < m}
ClearlyE(m, p;) is closed and E, = (] E(m,p;) being an intersection of

1
closed sets is closed. Now X = [J E,,. For if 2 € X, then p;(2) < M(2) for
m
all i and so there is an integer m(2) such that p;(x) < m(z) for all i. This
implies that = € E,,(,).
This proves that X = |J E, and since X is of the second category, this

m

implies that at least one of the sets £, say Ey, is not nowhere dense (for
the first category). Since E,; is not nowhere dense we have that £, contains
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d implies that S C Ey; = Ear

some sphere S and the fact that E); is close
< M for all 1, and this

Finally x ; : 2
inally x € S implies x € £y, which implies pi(x)
completes the proof.



CONCLUSION

This Project contained five chapters, First chapter dealt with
the preliminaries which included some basic definitions and examples of met-
ric spaces, topology,open and closed ball,vector spaces, linear functionals. lin-
car metric space ete. Second Chapter dealt with Normed Linear Spaces and
Bounded linear transformations. It included the definition of norm, norined
lincar space,seminorm,p-norm, Cauchy scquence, Banach space, Bounded
Linear Transformation, some propositions and one corollary.T hird Chapter
dealt with the famous Hahn-Banach Theorem. This is one of the most fun-
damental theorems in functional analysis and is due to Hahn and Banach. It
yielded the existence of non-trivial continuous linear functionals on a normed
linear space, a basic result necessary for the development of a large por-
tion of functional analysis.This chapter also included some more theorems.
Fourth chapter dealt with Closed Graph Theorem and Open Mapping theo-
rem. The closed graph theorem is an important result in functional analysis
that guarantees that a closed linear operator is continuous under certain
conditions.The open mapping theorem asserts that certain continuous lin-
ear transformations between Banach spaces map open sets into open sets.
The chapter also included some more theorems and examples.The last chap-
ter dealt Banach-Steinhaus Theorem which was another famous theorem of
Functional Analysis. We also discussed the famous Uniform Boundeduness
Principle in this chapter.
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