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INTRODUCTION

Fractals we infinitely complex patterns that are self-similar acvoss different
scales Since its introduction in 1975, the concept of the fractal has given rise
'O & new system of geometry that has had a significant impact on diverse
fields like physical chemistry, physiology, and fuid mechanics. Fractals is
a new branch of mathematics and art Most physical systems of nature and
many human artifacts are not regular geometric shapes of the standard ge-
ometry derived from Euclid. Fractal geometry offers almost unlimited WHYS
of describing, measuring and predicting these natural phenomena. Although
fractal geometry is closely connected with computer techniques, some peaple
hiad worked on fractals long before the invention of computers. Those people
were British cartographers, who encountered the problem in measuring the
length of Britain coast. The coastline measured on a large scale map was
approximately half the length of coastline measured on a detailed map. The
closer they logked, the more detailed and longer the coastline became, They

did nnt realize that they had discovered one of the main properties of frac-
Lals,

Fractals are common in nature and are found nearly everywhere, An oxam-
ple is broccoli. Every branch of broceoli Jooks just like its parent stalk, The
surface of the lining of vour lungs has a fractal pattern that allows for more
oxygen to be abhsarbed. Such complex real-world processes can be expressed
in equations through fractal geometry. Even to the everyday person, fractals

are generally neat to look at even if you don’t understand whal s fractal is.
But to a mathematician, it is a neat subject area.

This project explain the concepts of fractals The project inelndes four chap-
ters The first chapter *An introduction to factals’ deals with some of the ba-
gic concepts like deﬁnitijn.c]assiﬁmtinn.IFuperti:s?l;achlﬁquaa for generating
fractals and a short discussion aboul [ractals and thaos. The second chapler
“The fundamentals of fractal geometry' explain the concepts of Hansdorff
measure and dimensions and seme examples of fractals The third chapter
discuss shout sell similarity and the fourth chapter points @

ut the varigys
applications of ractals in varions fields.



Chapter 1

AN INTRODUCTION TO
FRACTALS.

1.1 Definition of fractal.

A fractal is 4 never-mding pattermn There are several definitions of Fractals,
One of them i based on an important property of the fractal called the
self-similarity. Thus, the definition of fractal is most usually defined on the
brasic ilews of sell-similanly sl Ui unusual relationsbip fractals have wilh
the space they are embedded in. Many fractals possess the property of self-
similazity, at least approximately, if not exactly. A selfsimilar object i« one
whose component parts resemble the wholo. This reiteration of details or
patterns ocowrs at progressively smaller scales and continue indefinitely. so

that cach parl of each part, when magnified, will look basicallv like a fixed
part of the whale object.

Ome often cited description that Mandelbrot published to deseribe geometric
fractals is “a rough or Iragmented geometric shape that ean be split iuto
parts, each of which is (at least approximately) a reduced-size eopy of the
whele”; this is generally helpful but limited. Because of the trouble fnvolved

in finding one definition for ractals, some argue that fractals should not he
strictly defined at all.

1.2 Role of Mathematicians.

The term [ractal, derived from the Latin word fractus (“fragmented,™ o
“hroken” ), was coined by the Polish-born mathematician Benoit B, Mandel-
brot.



Phe lion's shre of e eredit for the development. of fractal geometry goes
M Benoit Mandelbrot, many (lher mathematicians in the century preceding
him had lnid the foundiations for his work. Moreover, Mandelhrot owes a
mreat deal of his advancements to Lis ability to use computer technology —
an advantage that his predecessors distinctly lacked; however, this in no way
detracts from his visonary achievements. Nevertheless, while acknowledging
and understanding the accomplishments of Mandelbrot, it undoubtedly helps
fo have some familiarily with the relevant works of Karl Weinrstrass, Georg
Cantor, Felix Hansderff, Gaston Julia, Pierre Fatou and Paul Lévy — not
ouly to make Mandelbrot's work clearer — but to see its connections to other
biranches of mathematics. Although the key concepts associated with fractals
ha{l been studied for vears by mathematicians, Mandelbrot was the first to
pomt out that fractals could be an ideal tool in applied mathematics.

1.3 Classification of fractals.

There are a lot of different types of fractals. The most popular types are
Complex number fractals and Iterated Function System {IFS) fractals.

1.3.1 Complex number fractals

Two leading researchers in the feld of complex number fractals are Gaston
Maurice Julia and Benolt Mandelbrot. Inspired by Julia’s work, and with

the aid of computer graphics, Mandelbrot was able to show the first pictures
of the most heautiful fractals known today, Mandelbrot set and Julia set
explain the complex number fractals

1.3.2 Iterated Function System Fractals

[terated Function Systom ([F5) fractals are createsd on the basis of simple
plane transformations: acaling, dislocation and the plane axes rotation. The
it Famons TFS fractals are the Sierpinski Triangle and the Koch Snowflake,

1.4 Properties of fractals.

T of the most imprland progrerties of fractals are sell-similarity and non-
intoger dlipmension



1.4.1 Self-Similarity:

O of the basic properties of fractal images is the notion of self-similarity.
Thist iden cun be explained wsin £ the example of Sierpinski Triangle Sierpinsk
Triangle also called us Sierpinski Gasket or Sierpinski Sieve. It is a fractal
With o shape of an cquilsteral triangle, The Sicrpinsld trianglc § can be

tonstructed from an equilateral trismgle by repeated removal of triangular
subeets:

L. Start with an equilatera] triangle.

2. Subdivide it into four smaller congruent equilateral triangles and re-
mave the central triangle

4. Repeat step 2 with each of the remaining smaller triangles infinitely.

A L4
£ &b £

Note that § may be decomposed into 3 congruent figures, each of which is
exactly half the size of 8 as shown in the figure. That is to say, if we magnify
any of the 3 pieces of 8 by a factor of 2, we obtain an exact replica of 8,
That is, S consists of 3 self-similar copies of itself, each with magnification
factor 2. 8 can be further decompased into O self-similar copies of itself, each
with magnification factor 4. Or it can be decomposed into 27 seli-gimilay
pieces, cach with magnification factor 8 and so on. In general we may divide
S into 3* self-similar pieces, each of which is congruent, and each of which
may be magnified by a lactor of 2% Lo yield the entire figure. This type of
sall-similarily at all scales is o hallmark of the images known as fractals,

1.4.2 The non-integer dimension

The non-integer dimension is more difficull lo explain. Classical Eeometlry
deals with olyjects of integer dimensions: zero dimensional points, one di-
rnensional lines and curves, two-dimensional plane figures such as SOUATES

fi



i eireles, wnd Uhree-climensionanl solids such as cubes and spheres. However,
MY natural phenomena are betior deseribed using a dimension between
"0 whole numbers. So, while & straight line has a dimension of one, a frac-
tal curve will have a dimension between one and two, depending on how
tmuch space it takes up as it twists and curves. The more the flat fractal
lills & plane, the closer it approaches two dimensions. Likewise, a "hilly frac-
tal scene™ will reach a dimension somewhere between two and three. 50, 8
fractal landseape made up of a large hill covered with tiny mounds would
be close to the second ditnension, while a rough surface composed of many
medium-gized hills would be close to the third dimension.

The concept. of a fractal dimension rests in unconventional views of scaling
and dimension. For example, notice that each step of the Sierpinski gas-
ket iteration removes one quarter of the remaining area. If this process is
continued indefinitely, we would end up essentially removing all the area,
meaning we started with a 2-dimensional area, and somehow end up with
something less than that, but seemingly more than just a 1-dimensional line
(approeimately 1.585).
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Consider a line segment. 1f we shrink it to half its size, then, we need 2 copies
of the new object to cover the original object. If we shrink it to one-third of
its size, then we need 3 copies of the new object to cover the original ohject.
Now consider a rectangle. If we shrink it to half of its size. then we e
4 copies of the new object to cover the original object, If we shrink it 1o
one-third of its size, then we need 9 copies of the new object to cover the
original object. Next, consider a cube. If we shrink it to half of its size, then
we need 8 copies of the new object to cover the original object. 1f we shrink
it to one-third of its size, then we need 27 copls of the new.ahisct to corer
the ariginal object.

Suppase that, when we reduce the scale of an object by a factor of k (je.,
we shrink it to L/k th of its eriginal size), we require N copies of the new

B



object Lo cover the original one. For the line segment, ¥ = k; for the square,
N = k% und for the cube, N = k% In general, if W = k% | we may refer to d
a8 o kind of dimension of the ohject. This notion, when generalized suitably
"0 apply to objects that de not have the property of self-similarity, gives
the Hausdorff-Besicovitch dimension of the object. The topalogical dimen-
ston and Hawsdorfl-Besicovitch dimension coincide for the line segment, the
square and the enbe. But there are objects for which the two do not coin-
cide; such objects are known as fractals. The valne of Hausdorff—Besicovitch
dimension may be non-integral (which explainsg the name ‘fractal’ for such
an object). Hence the Hausdorff- Besicovitch dimension is also sometimes
called ‘fractal dimension’.

1.5 Common techniques for generating Frac-
tals.

Images of fractals can be created using fractal-generating software., Common
technigues for generating fractals are:

1.5.1 Escape-time fractals

These are defined by a recurrence relation at each point in a space (such as
the complex plane). Examples of this type are the Mandelbrot set, Julia set,
the Burning Ship fractal and the Lyapunov fractal.

1.5.2 Iterated function systems

These have a fixed geometric replacement rule. Cantor set, Sierpinski gasket,
Koch snowflake, Menger sponge are some examples of such fractals

1.5.3 Random fractals

Generated by stochastic rather than deterministic processes. For example
Trajectories of the Brownian motion, fractal landscapes and the Brownian

free.



1.6 Fractals and Chaos

The relation between fractal and chaos is very strong. Fractal Eelnmelrj' N
used to deseribe the behaviour of chaotic system we usually find in nature.
Chaos theory is closely related to fractal theory. Many events were G“Fﬂd‘
ered 1o be chaotic, unpredictable and random. A butterfiy ﬂappmglﬂﬁ W{ng:i
in a South American jungle, it is said, can lead to a hwrricane in China
(Butterfly effect) This is the signature of chaos theory. :
Chaoe Theary deals with nonlinear things that are effectively impossible to
predict or control, like turbulence, weather, the stock market, our brain
states, and so on. Chaos is something which is very sensitive to initial con-
dition. Chaotic systems are mathematically determiniatic but nearly impos-
sible to predict. For example, the weather is an example of chaotic system.
System often becomes chaotic when there is a feedback present. Fractal is a
never-ending pattern. They are created by repeating a simple process again
and again in an ongoing feedback loop. To see just how far a fractal or cer-
tain conditions can diverge from its starting point, we can iterate with two
initial conditions that differ by just & very small amount.

The result of any 1FS is fixed point which is called the attractor, As the
function iterates it generates some sequence of points which finally converges
to the attractor. Basin of attraction is an area which bounds the solution.
Points which are not bounded by basin of attraction can approximate to in-
finity or further from attractor. Fractals that bear this particular trait are
called escape-time fractals. Points which are sutside from basin of attraction
are called Repellers. Some of the attractor discovered are most surprising in
form called strange attractors Strange attractor differs from regular attrac-
tors in that it is impossible to tell where they will be. Fractal are related to
chacs because Lhey are complex systems that have definite properties.

10



Chapter 2

THE FUNDAMENTALS OF
FRACTAL GEOMETRY.

2.1 Dimension and Measure

A point has a dimension of zero, & line has a dimension of one, 4 sguare has
@ dimension of two, and a cube has & dimension of three. Our understanding
of dimension is discrete; we sort all of the objects surrounding us into one of
Lhie abwwve calegories. TL boms out Ul we can'l classily quite all ubjecls uto
An integer-dimension category; those objects which behave in StTamge Ways
with regards to dimension are called fractals,

Suppose we have a ball of radius r, B, c B¢ + Where d is a positive integer,
Let v denote the d-dimensional vohime of B, . The dimension d is related to
the volume v and radius r of B,. Notice that if d=1, then B. is simply a
line segment, s0 v oc 7 (in this case, v iz the length of B, ). Ifd = 2, then B,
18 a circle, s0 v o r? (i this case, v is the area of B, )-Ifd=3 then B, is
a sphere, so v o v, Therefore, we expect that v o r ordee loglv)/ log(r).
Now, notice that our intuitive definition of dimension relies on two coneepts,
radius (distance] and volume.

Definition 2.1.1. Let § C B". A mensure 4 on § is ¢ function u : 5§ —
B, U {00} which satisfies the follouring conditions:

fa) u(@) =0
() p(A) < p(B) fAcC B
() p{Uiz A € X2, 6 (4], where (A, € B* :i € T} is a countable collec

tion af seis,

Intuitively, & measure determines the size of a set. Let's EXamine a simple
pxample of & measure, the point mass. Fix some specific element a. If 4

11



UM cotams w, Chon pl Al Ly o Lhes sl AF eloes met contain e, Uhen
HLATY L Len's check thiat. Lhe poanl s 15 indee] 0 messoare

Lo ) 1, sinee @ eontains no roints, and in parlicular, does not con-
Lk g

= Suppoge A C B. fac A, then cleraly a € B, so p(A) = p(B) = 1

Wa g A then wA) = 0. Since p(B) = 0 or (A = 1, we have
rlAY < i B)

3. Let A; be a countable collection of sets, where
{Ad,eR":1e[}) Kee UZ, A;, then EUZ, 4) = 1. Since a €
L2 A, we must have o € A, for at least one i € . Hence Yo pld) =
Losop (U, 4)) < i (A Now, ifn ¢ L':; A, then p (L2, A =
0. In addition, this means that o # A;foralli € I. Hence FooslA) =
O and thus g (L2, Ai) < 158, m(4a).

Definition 2.1.2. Let =, y £ B®, where

T = (2, Ty Ta)s o0d ¥ = (1,98, i 00). Then the Euckidean distanes
between = and v is dejfined as

dz,u) = ‘k-“{le )+ (B2l 4 (=)

Definition 2.1.3. Let & € R". The dinmeter of § is defined to he the largest
distance between any two points of §,|8| = sup{d(z,y) - z,y € 5§}

Definition 2.1.4. Let § C R, A §-cover of § is defined us {I, e R" . ¢ £ [},
a finite or courtable collection of sets, where § ¢ UZ, U and D < U} <.

2.2 Hausdorff measure

Now, let's begin to define the concept of Hausdorff measure, developed by
Felia Hansdorll, & great Genman mathematician, First, let's understand the

uantity S} Supprse 8 C B and # 2 0 Given a fxed § = 0, we define

118) mr{zuu‘. (T4} 18 & S-cover of 5}
i1

12



Given o 6 = {I, we consider all of the d-covers of 5. Note thalt these covers
may have dismeter squal to or less than 4. For a visual of this expression,
vonsicer Figure 2.1 . In this diagram, s = 2. The area enclosed by the black
outline is our set §. Now, consider the sets U; and U,, two components of &
-cover of §. For each cover, we are snmming the square of the diamoter of
vach component of the cover, and then taking the infimum over all covers;
Lhis gives us H3(S).

13



Figure 2.1: Computing the 2-dimensional Hausdorff messure of a set.
arca enclosed by the black outline is the set 5.
two components of a d-cover of 8. see details in

The
The blue sets [7. ang 0y are
Lo,

14



Now. Wt s consider whn bagrpoens ko HEUS) wm & <3 1 As & ddecrenses, there
AR loss s lises d-covers of & bones, as 4 -3 1, the infimum conld increase
YU It change, but it coomed decrease. That is, ax 4 — 0, we have a mono-
totically increasing sequence, Siuce this sequence is not bounded, we have
that L o M E) exists, bt could be infinite.

Definition 2.2.1. Let § € R The s-dimensional Hausdor[J measure af 5
5 H'(8) = limg_p AN

Let's briefly convinee ourselves thal the s-dimensional Hausdorff measure is
mdeed a measure:

L We need to show that H'(@) = 0. Well, the empty set admits all
possible d-covers. In particular, it admits the cover {0}, i.e, @ C {0}.
For this cover, H}(@) = 52, |U" = T |{0}* = 0. Clearly, this is the
infimum over all d-covers, and thus, H*{@) = 0.

2 Suppese A ¢ B. We need to show that H*(A) < H*(B). Well, note
that if some [ is a cover of B, then U; must be a cover of 4. There
are, however, covers of A that are not covers of B. Therelore, for all
4> 0. Hj(A) < H}(B), since the extra covers of A could give a smaller
value for 357, |U4]". Hence H*(A) < H*(B).

3. The proof of this part was adapted frow [3]. Suppose {4, € R": i e I}
is a countable collection of sets. We need to show that H* (| =, 4,) <
2oy H*(A;). Assume that the s-dimensional Hausdorff dimension of
each set is finite, that is H*(A4;) < oo forall i € 1. Now, given ¢ > 0,
for all i € I there exists a d-cover {U‘fi]} (that depends on § ) of A,
such that

ij* s £
Zfﬂj '| <H{{A) + 5.
d
Now, summing over all 1 € |, we have

2 |u|
O

< Ew:”j{ﬁ.] + €

Sinoe [[,.’}‘J-} i A cover ol A; fov each i € 1, the collection Lies {Lrjti}}
is o cover of | ), A, 50 we have

" (U AJ) £ 3N |ﬂ}"i' < ‘En{;m.j e
i i 11

1
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0w bt ¢ — DD,
H; (U A,) <Y Hi(A)
G =1
for any d > 0. Letting § — 0, we then have

H (U.q.) < iﬂ" (A,

) (e

Henee the s-dimensional Hausdorl mesgnre is indesd a measare.

2.3 Hausdorff dimension

Now, note that if & < 1, then for any set § © R" as s increases, Hi[S)
5 non-inereasing; henee H*(S) is likewise non-increasing. Let ¢ > s, and
suppose {U;} iz a d-cover of 5. Then

a =

YW < YIS < 8y |

=l il
Taking the infimum of both sides, we get
Hi(S) < & Hi(5). Now, let & — 0. If H*(S) < oo, then H'(5) = 0.
Likewise, if #*(5) = 0, then we must have fimg_; H}(5) = oc. That is,
there is no more than one value of s such that 0 < H*(S) < co. Visually,
this means that on a graph of H*(5) vs. s, there is a value of & at which

H*( &) jumps from oo to D (see Figure 2). Tt is this value of s which we define
as the Hausdorll dimension of 5.

Definition 2.3.1. Let § CR". The Hausdorf] dimension of S, or dimg 5,
15

fli'l'l't" 8 = inf l-ﬂ - 0: .FIH'{H} = U]'

=sup{a: H'(5F) = 0o}



(s

n-}—————,
dimm, 9 $

H

Figure 2.2: Graph of H*(S) vs. s for a sel 5. As we can see, there is a jump
from oo to 0, and Lhe Hausdor(l dimension of S is the value of s at which
this jump oceurs,

To intuitively understand the Hausdor(l dimension, lel’s test this definition

17



on an object we are familiar with, such as the line segment [D,1]. First,
suppose § = (.1, Then, given a d-cover of our line segment, all rLIm compo-
nents of the cover have diameter less than or equal to 0.1, that is [Uj] < 0.1
for all i. Of cowrse, there are many ways we could cover this line segment
with these {/,, However, note that we can cover [0, 1] with exa.cti}'rmn of
these components if they are arranged appropriately, for instance, il each
IU,] = 0.1, and the sets do not overlap. Now, analogously, suppose we have
@ d-cover, with the diameter of each component |U;| = . We then have that

PP = T g5 = 150 = 1. Now, when s > 1, if we let § = 0, we
have §*=! — 0. When s < 1, if we let § = 0, we have §*~' — oo. That is, if
s < 1,H*([0,1]) = oo, and if s > 1, H*([0,1]) = 0. Since the jump between 0
and oc occurs at s = 1, the Hausdorff dimension of the line the jump between
0 and oc occ segment [0, 1] is 1, as expected.

2.4 Examples of Fractals and their Hausdorff
dimensions.

2.4.1 Cantor set

Start with the unit interval [0, 1]. Delete the open middle third of the
segment, leaving behind two closed segments: [0, 1/3] and [2/3, 1]. Note
that, each has length 1/3. Repeat the same construction for each of them,
namely, delete their open middle thirds. After this step, four closed intervals
are left: [0, 1/9], [2/9, 1/3], [2/3, 7/9] and [8/9, 1]. Each of these has length
1/9. Repeat the construction yet again; namely, delete the open middle
thirds of cach closed interval remaining. Continue these steps indefinitely.
The construction is depicted in Figure.

1

113

19

Now, examine carefully the portion of the object corresponding to the ini-
tial one-third of the original segment. It is an exact veplica of

. the complete
object, but at one-third its scale. Note, moreover, P

that you need 2 copies of

18



Uhe scaled-down object to cover the object at full-scale. Hence, il Lhe Haus-
dorfi-Besicovitch dimension is d, then 3¢ = 2, giving d = log2/log3 = 0.651.
a non-integral quantity. The topological dimension of the Cantor set may be
shown to be 0.

2.4.2 Koch Snowflakes

The Koch snowflake (also known as the Koch star and Koch island) is a
mathematical curve and one of the carliest fractals to have been described.
The Koch snowflake is based on the Koch curve.

Construction: The Koch curve can be constructed by starting with an equi-
lateral triangle, then recursively altering each line segment that forms a side
of the figure as follows:

1. Divide the line segment into three segments of equal length.

2. Draw an equilateral triangle that has the middle segment from step 1
as its base and points outward.

4 Remove the line segment that is the base of the triangle from step 2.

4. After one iteration of this process, the result is a shape similar to the
Star of David.

_ The Koch curve is the limit approached as the above steps arc followed
over and over again.

-\\.\‘ \; F.J_‘ ~ fﬂﬁf{ﬂﬁ

—
W

1]

N W

o7

R oot X0 g 5

(Fractal dimension is logd/log3 =~ 1.26)
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2.4.3 Mandelbrot set

The Mandelbrot set introduced by Jolin Briggs 1s knuwn to e thie most a-
maous fractal in modern mathematics, mainly because of its haunting heanty
The Mandelbrot set 1s a group of numbers defined by a simmple lormuli

=l = Tn+d "t r

Some numbers belong to the Mandelbrot set. and others don't. In this lor-
mula, ¢ is the number being evaluated. and 2 15 a sequence of wmbiers
(29,21, 22,29...) generated by the formula.  The first pumber 2y 1 set Lo
zero; the other numbers will depend on the valie of ¢ I the sequence of 2,
stays small (2, = 2 for all 7). ¢ 15 then elassiled as heing prart of the Man-
delbrot set, For example, let s evaluate the poant ¢ — L Then the sequenes
of 2,is0,1,2,5,26,677... Clearly this seequense is Gt stving sl so che
mumber 1 s not part of the Mandelbrot sel



FIGURE 1

FIGURE 2
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Figure 1 is a plot—a graph that shows which numbers are part of the Man-
delbrot set. Points that are black represent numbers that are part of the set.
So, the numbers, -1, -1/2, and 0 are part of the Mandelbrot set.

2.4.4 Julia set

Julia sets are strictly connected with the Mandelbrot set. The iterative
function that is used to produce them is the same as for the Mandelbrot
set. The only difference is the way this formula is used. In order to draw a
picture of the Mandelbrot set, we iterate the formula for each point C' of the
complex plane, always starting with.

T g

If we want to make a picture of a Julia set, C' must be constant during the
whole generation process, while the value of varies. The value of C deter-
mines the shape of the Julia set; in other words, each point of the complex
plane is associated with a particular Julia set.

A Julia set is either connected or disconnected. The most important rela-
tionship between Julia sets and Mandelbrot set is that while the Mandelbrot
set is connected (it is a single piece), a Julia set is connected only if it is
associated with a point inside the Mandelbrot set. The disconnected sets are
often called dust, they consist of individual points no matter what resolution
they are viewed at.
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Chapter 3
SELF-SIMILARITY

Selt-similar fractals are those which are composed of sealed eopies of them-
wlves that is to construct the next iteration of the fractal, we perform
ations on smaller versions of the shapes of the pre-

sumple translations or rol
rigorously define these

Vions tteration. In the following definitions, we will

maps. called contractions.

Definition 3.0.1. Let ) © B" be a closed subscl. Amap§:D = D
called o contraction if there exists a number ¢, where 0 < ¢ < 1, such that
Siz)— Siy) < clz—yl| for all z.y & ). We call S a conlracting sumilarity

of equalily holds, that is, if |S(z) = S(y)| = ¢lx — yl, and we call ¢ the ratio
af similariy.

Definition 3.0.2. A finite collection of contractions {5y, Sz, - -
I > 2, s ealled an iterated function system.

compacl set A C D s called an altractor if
.. Sy} is an iterated function system

., 8¢}, where

Definition 3.0.3. A non-emply
A= U, S(A), where {5y, 52,

colf-similar fractals are attractors; that is, they are completely de-

seribaed by some eellection of contracting gimnilarities. The theorem below
will allew us to caleulate the Hausdorfl dimension of self-similar fractals by
ilarities which define them. Tius caleulation
J intuitive than direct calculation of the di-

Henee

tilizang the ratios ol the sim
inethod is much more simple an

Fric T

Lot F be o fractal such that
oS,
[ |

23
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. ) : =5
where S, ... 8, are ssmilarities with ralios €y, ... Cm. Then, dimg F' = 5,
where s is given by

2 4=1

i=1
In addition, HS(F) 1s a finile positive number. Proof. To prove this ihea:*ﬂ;.ﬂ.-
we will bound H*(F) from above and from below, and thus show that H [J
is @ finite posilive number. Hence, since il is this particular value of s which
makes H*(F) finile, we will have dimy F = 5. The first ha{,l' of the proof
(the upper bound), prowmded below, shows that H*(F) 1s finite; for r.:*z.e proof
that H*(F) is positive (the lower bound), see Falconer’s F’mctall!_ Geomelry
[1]. Suppose we have 3 ¢! = 1. Now, consider all compositions of the
similarities Sy,..., Sy of length k, where k = 1. (Note that we can repeat
similarities; for inslance, a composition of length k = 3 could be 5y 0 5\ © Sz:]
Let Iy, be an indering set for all such compositions of k. Then, by applying
(4.5) k times, we have

e ) g o
=l =1 \i=l o

S

E-tirmics

That is, F is equal to the union of the images of all possible compositions of
length k of the similarities over F.

Note that the above equality holds for all k € N, and for all k, this union of

nages is a cover of F. Now, since the mapping S, 0---0 S, is a stmilanity
itself, with ratio ¢, ---¢;,, we have

Do ISy o oSy (F) = IFFY (e -ca)®
I Iy

n(54)-(5e)

where the last equality is by ({.6). Note that

iSl] BIHDSII.[FH:C&|“'¢::,IF1

< (max{e),...,e,))" |F|



Now, using the expression above, since our choice of k is unbounded, for any
0 > 0, we can find a k such that |S, o---0 S, (F)| < d. Therefore, these
images are not just covers of F, but are §-covers of F. However, there are
many more possible covers of F. Thus we have an inequality in Hj(F) <

|F|*, and hence H*(F) < |F|*. Since |F| is finite, is bounded above.
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Chapter 4

APPLICATIONS OF
FRACTALS.

4.1 Fractals in nature.

4.1.1 Fractals in Trees.

Fractals are seen in the branches of trees from the way a tree grows limbs.
The main trunk of the tree is the origin point for the Fractal and each set
of branches that grow off of that main trunk subsequently have their own
branches that continue to grow and have branches of their own. Eventually
the branches become small enough they become twigs, and these twigs will
eventually grow into bigger branches and have twigs of their own. This

cycle creates an “infinite” pattern of tree branches. Each branch of the tree
resembles a smaller scale version of the whole shape.

4.1.2 Fractals in Animal Bodies.

Another incredible place where Fractals are seen is in the circulatory and
respiratory system of animals. Consider the human respiratory system, a
fractal that begins with a single trunk (similar to the tree) that branches

off and expands into a much more fine-grained network of cavities can be
observed.

4.1.3 Fractals in Snowflakes.

Every snowflake is unique and one of the contributin
ness of snowflakes is that they form in fractal patte
incredible amounts of detail and also variation.

g factors to the unique-
rns which can allow for
In the case of ice crystal
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[ormations, the starting point of the fractal is in the centre and the shape
expands outward in all dircctions. As the crystal expands, the fractal struc-
tures are formed in each direction. Each iteration of the shape gets smaller
and more detailed, which also contributes to the overall complexity of the

shape.

4.1.4 Fractals in Lightning

A lightning storm is one of the nature's most powerful displays of Fractals.
When the currenl passes through the air, it becomes superheated. Super-
heating of the air changes ils electrical conductivity and allows the current
to fragment out. This process repeats for cach level of fragmentation and fi-
nally results in a fractal. The inverted image of a lightning strike or electrical

discharge has a great resemblance to a tree.

4.1.5 Fractals in Plants and Leaves

Plants and leaves, just like animals, have internal structures that distribute
nutrients through a network of Fractals. These structures allow for easy dis-
tribution of liquids and other life sustaining materials Lo travel through the
plant and support the life of every cell. Beyond the cellular level, some types
of plants themselves are very fractal in look. One of the most notable exam-
ples is a type of broccoli called Romanesco broceoli. This type of broccoli has
an incredible structure of spires which emanate from a single source (similar
to the Fractal Snowflake) that in turn have their own spires which continue
on to the tip of the plant. A fern is another great example of a fractal. Ferns
are essentially made up of the same general structure repeated over and over

again.

4.1.6 Fractals in Clouds.

Clouds also display characteristics of Fractals. The turbulence that is found
within the atmosphere has an interesting iinpact in the way water particles
interact with each other. Turbulence is fractal in nature and therefore has
a direct impact on the formation and visual look of clouds. The amount
of condensation, ice cryslals, and precipilation expelled from the clouds all
impacts the state of the clond and the system’s structure.
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4.1.7 Fractals in Crystals.

Like ice formations, other natural forms of crystals like those created from
minerals can also exhibit Fractal properties. Depending on the specific for-
mation of crystal and the minerals used some are more fractal in appearance
than others. A great example of this would be the cubic nature of somc
formations of Amethyst or pyrite,

4.2 Fractals in technology.

4.2.1 Fractal antenna

A fractal antenna is an antenna that uses a fractal, self-similar design to
maximize the effective length, or increase the perimeter (on inside sections or
the outer structure), of material that can receive or transmit electromagnetic
radiation within a given total surface area or volume.

4.2.2 Fractal Dimension on network.

Fractal analysis is useful in the study of complex networks, present in both
natural and artificial systems such as computer systems, brain and social
networks, allowing further development of the field in network science. Com-
plex networks have been studied extensively owing to their relevance to many
real systems such as the world-wide web, the Internet, energy landscapes and
biological and social networks.

4.3 Fractals in medicine.

With the use of modern medicine, malfunctioning in the hwman body can be
detected. Because human body is full of fractals, fractal math can be used
to quantify, describe, diagnose and perhaps soon to help cure diseases. The
fractal dimension of the lung appears to vary between healthy and sick lungs,

potentially aiding in the automated detection of the disease. To diagnose
Cancer, fractal analysis is helpful.

4.4 Fractals in market analysis.

Benoit Mandelbrot introduced a new fractal theory which is helpful to anal-
yse the market. After plotting price data of market for a month some rises
and fall will be appeared in the graph. Even if this graph is plotted for weak
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or even for a day same rises and fall will be appeared. This is self-similar
property of fractal.

Fractals in animal bodies,

Fractals in snowflakes. Fractals in lightning.

Fractals In lerns Fractals in plants.
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Fractals in antenna.
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Fractals in medicines.
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Fractal dimension on network.
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4.5 Conclusion

A fractal is a recursively created never-ending pattern that is usually self-
similar in nature. Separate from Euclidean geometry, fractal geometry ad-
dresses the more non-uniform shapes found in nature, such as mountains,
clouds and trees.Fractals provide a systematic method to capture the “rough-
ness” of some objects. This method to capture roughness has uses in a wide
variety of fields ranging from programming to medicine.

Fractals are all around us. Mathematicians have developed and are con-
tinuing to develop equations to generate these fractals. Maybe the stock
market and weather will be even more predictable in the future. At first,
when looking at the colourful picture of a fractal, one might think that it is
just a creative piece of artwork. However, after studying the mathematical
background behind them, they have so much more depth than being just a
piece of art.

Even though the subject of fractal geometry is purely math, many peaple
have found ways to take it outside math into computer science, health sci-
ence, and even fashion and the arts. Fractals are used to make our movies
look more amazing than life, and to make our computer and video games
feel like we are right there in them. The discovery of fractals has allowed us
to decrease the size of our cell phones every year and at the same time they
have helped doctors anticipate heart problems in our bodies way before they
happen. Without the discovery of fractals, our technology, entertainment,
our health, ete. would not be where it is today.

This project explained the concepts of fractals through four chapters.The first
chapter ‘An introduction to fractals’ dealt with some of the basic concepts
like definition,classification,properties,techniques for generating fractals and
a short discussion about fractals and chaos.The second chapter ‘The funda-
mentals of fractal geometry’ explained the concepts of Hausdorff measure and
dimensions and some examples of [ractals. The third chapter discussed about

self similarity and the fourth chapter pointed out the various applications of
fractals in various fields.
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PRELIMINARY

Pooled Distribution and It’s Testing

In Mathematical Statistics, “pooling” describes the practice of
gathering together small sets of data that are assumed to have
the same value of a characteristic (e.g., a mean) and using the
combined larger set (the “pool”) to obtain a more precise esti-

mate of that characteristic.

In traditional lab testing , we analyze a single sample to detr-
mine whether it is positive or negative . But in this method ,

the use of resources is very high and is time consuming.
So, the method of pool testing is performed .

If pooled test result is negative , then all samples in the partic-

ular pool are considered negative .

If the pooled sample test is positive then all samples of the pool
are assumed postive and are tested individually to determine

which is positive.

It appears most often in the two sample t-test, which is used

to test whether or not the means of two populations are equal,



Two Sample t-test OR Pooled Testing

The two-sample t-test (also known as the independent sam-
ples t-test) is a method used to test whether the unknown pop-

ulation means of two groups are equal or not.

Since the testing population is normally distributed , this is the

most preferred method.

How to perform the two-sample t-test

For each group, we need the average, standard deviation and

sample size.

This difference in our samples estimates the difference between

the population means for the two groups.

Next, we calculate the pooled standard deviation. This builds

a combined estimate of the overall standard deviation.

Next we calculate pooled varience ;

ni — 1)s? ng — 1)s2
gy =2 ,ifli;(i; " (1)

where nj, no and s;, s2 represent the sample sizes and stan-

dard deviations of first and second pools(populations).



Next, we take the square root of the pooled variance to get

the pooled standard deviation.

We now have all the pieces for our test statistic. We have the
difference of the averages, the pooled standard deviation and
the sample sizes. We calculate our test statistic as follows:

difference of group means

- 2
standard error of difference (2)
where , 4
standard error = &
\/ 1/ny +1/ny

the significance level (o = 0.05) and the degrees of freedom
= df = m +nz — 2 are also known and hence we calculate .
Now , We compare the value of ¢, to the t value.

If £ >ty we reject the null hypothesis .

Mathematical Modeling

Mathematical modeling is the process of describing a real world
problem in mathematical terms, usually in the form of equa-
tions, and then using these equations both to help understand

the original problem, and also to discover new features about
the problem.

The aim of epidemic modeling (Mathematical Modeling in Epi-

demology) is to understand and if possible control the spread of

8



the disease.
That is , we can get an idea about

e How fast the disease spreads ?

e How much of the total population is infected or will be
infected 7

e Control measures.

e Effects of Migration/ Environment/ Ecology, etc. .

e Persistence of the disease.



INTRODUCTION

Coronavirus disease (COVID-19) is an infectious disease caused
by the SARS-CoV-2 virus. The disease is spreding rapidly and

hence there is a need to put an end to its spread.

To improve our understanding of how a disease spreads, scien-
tists use a combination of mathematics and data for mathemat-
ical modeling. Mathematical models provide a way to formu-
late simple rules to approximate how a virus like SARS-CoV-2
spreads (and thereby approximate the spread of the associated
disease COVID-19). When creating and studying a mathemati-
cal model, scientists seek to improve the accuracy of forecastsA
type of prediction that gives a range of possibilities of future
outcomes. A scientist may forecast a range for the number of
people who get COVID-19 during a particular period of time
and how a disease will spread. They also try to test the effects
of possible responses, such as everyone staying at home, to re-
duce the number of infections that result from the spread of a
disease. Their research can help inform the people who make
guidelines or policies to protect others from diseases Scientists
who specialize in these studies are often called Mathematical

Epidemologists

10



The method of pooled testing (statistical method of testing
of hypothesis) helps us to test large number of samples and thus
monitor the spread of the virus.

Mathematical models and computation have played i'.:'t major
role in influencing the responses of governments to the COVID-
19 pandemic. These models are much more detailed than the
SIR. model. The current COVID-19 pandemic illustrates the im-
portance of the mathematical modeling of infectious diseases.
Mathematical and computational approaches allow people to
make progress toward reducing the spread of a disease while
researchers develop vaccines and treatments. They also help

efforts to design interventions and vaccination programs.

11



1 POOLED TESTING

When testing for a disease such as COVID-19, the standard
method isindividual testing: we take a sample from each indi-
vidual and test these samples separately. Under the convenient,
mathematical model of perfect testing, a sample from an in-
fected individual always gives a positive result, while a sample
from a noninfected individual always gives a negative result. For
N individuals, this requires N tests, and we can accurately clas-
sify all the individuals as infected or noninfected. The infected
ndividuals can be advised to self-isolate and their contacts can
be traced, while the noninfected individuals are reassured that
they are free of the disease.

An alternative to individual testing is pooled testing, also called
group testing. Instead of testing individual samples, we can in-
stead pool samples together and test that pooled sample. Again
under the convenient model of perfect testing, a pool c{:;usisting
entirely of uninfected samples gives a negative result, while a
pool containing one or more infected samples gives a positive
result. Thus a negative result demonstrates that every individ-
ual in the pool is noninfected, while a positive result requires
further information to work out which individuals in the pools

are infected.

12



when the prevalence of a disense is low enough and the accuracy
of a test is high enough, pooled Lesting ean aceurately classify
individuals as infected or noninfected in fewer than Ntests. This
can be more efficient—and often much more efficient—than in-

dividual testing.

Testing for COVID-19 Testing people for coronavirus is a

public health measure that reduces the spread of coronavirus .In
the real world, testing is not perlect. We distinguish between
two types of test errors: .
e False positive test crrors, where a sample (individual or
pool) that does not contain any infection wrongly gives a
positive result. The probability that an infection-free sam-

ple correctly gives a negative result is called the specificity.

e False negative test errors, where a sample (individual or

pool) that does contain infection wrongly gives a negative

result. The probability that an infected sample correctly
gives a positive result is called the sensitivity.

So, in order Lo avoid these errors and to gel a more precise test

result. , we use Lhe method of Pool Testing

The Math Of Pool Testing Il you know that the probabil-

ity (p) that a sample is infected, you can compute the optimal
number of samples (k) Lo combine into a pooled sample. Here

"optimal” means "resulting in the fewest tests, on average.”

13



Suppose you want to test a large number, N, of individual sam-

ples. If each pooled sample contains k individual samples, then:

e There are about N/k pooled samples, so you need that

many tests for the first round of testing.

e For each pooled sample, the probability that the sample
does NOT test positive is the probability of having zero
positive samples in a random set of k independent sam-

ples. This probability is giveﬁ by the binomial distribution:

Binom(0,p, k) = (1-p)k. Consequently, the probability

that a pooled sample DOES test positive is p2 = 1-(1-p)k.
e From the preceding calculation, the expected number of
positive pooled samples is pa [V k.

e Each positive test from the first round triggers k additional
tests in the second round, so the expected number of tests

in the second round is p2N,
e the expected number of TOTAL tests is Ny = N(1 1k +
p2)-

If you don't use pooling, you have to do N tests, so pool test-
ing reduces the total number of tests by the expected fraction

1/k +p2 or f(k;p) = 1/k+1-(1-p)k .

14



Stages of a Pooled Testing

Pooled testing was first proposed in 1943 by Dorfman for the
detection of cases of syphilis in those called up for US army
service during the Second World War., '

Suppose we have N individuals, and we wish to identify who

among those N individuals is infected.

e We choose a pool size s, and we divide the N individuals
into N/s disjoint groups of size s each. (We assume, for
simplicity, that N is an exact multiple of s.) We take a
sample from each of the N individuals, and then, for each
of the N/s groups, we pool the samples from that group
into a single pooled sample. We then run a test on each of

the N/s pooled samples.

e 1. If a pool tests negative, we know all the individuals in
the corresponding group are noninfected.

2. If a pool tests positive, we then follow up by individu-
ally test all the individuals in the corresponding group.
These individual tests discover which of the samples in

the pool were infected or noninfected.

At the end of this process, under our perfect testing model,
we have correctly classified all the individuals as infected or

noninfected.



Thus pooled testing has the potential to develop into a mass

testing strategy where large number of people can be tested
quickly.

The pool size and population are denoted by s and N respec-
tively. The rate of infection and non infection respectively by p
and g = 1p. where p is,

_ Numberofin fected
~ Populationsize

P

1.1 DORFMAN’S ALGORITHM

In the early 1940s, group testing (pooled testing) has been
used to reduce costs in a variety of applications, including in-
fectious disease screening, drug discovery, and genetics. In such
applications, the goal is often to classify individuals as positive
or negative using initial group testing results.Many decoding al-
gorithms have been proposed, but most fail to acknowledge, and

to further exploit, the heterogeneous nature of the individuals
being screened.

In 1943, Robert Dorfman a professor of political economy at
Harvard University who made great contributions to the fields

of economics, statistics, group testing and in the process of cod-

16



ing theory , studied group testing which is a relatively new field
of applied mathematics that can be applied to a wide range of
practical applications and is an active area of research today.He
suggested the Dorfman’s algorithin.

Dorfman’'s algorithm was the first, group testing Algorithm.
This entailed pooling together biological specimens from several
individuals and testing these pools of specimens rather than test-
ing each individual specimen. If a pool tested negative, all spec-
imens in that pool were declared negative. Otherwise, further
testing on individual specimen from the pool were employed to
identify all positive individuals.Mathematically, Dorfinan’s al-
gorithm partitions the set in the first stage, then individually

tests each item in the positive sets in the second stage.

Considering the Dorfman’s Algorithm, we move on to the

diffrent types of pooled testing which is operated under the prin-
ciple of Dorfman’s Algorithm.

17



1.2 ONETIME POOLING

The onetime pooling consists of two steps of tests. In the first
round, a pool of individuals are formed and tested. Il the result
is negative all individuals in the pool are declared negative. If
the result is positive, each person in the pool is individually

tested. This is the simplest of pooled testing strategy.

Expected number of tests

For a pool size of s, the probability that no one has infection is

¢* and the probability that at least one person is infected in the

pool is 1 — ¢°.

Therefore expected number of tests is

Exp(s,q) =¢'+ (s+1)(1 - ¢)
=s(l—-¢")+1

No of tests required in worst cases

The expected number of testing need not happen all the time.
Therefore, we cannot use this to determine the number of testing
kits required. In this subsection, we identify the number of
tests required in the worst case. Let us assume we do pooled

1o on a population of size N and pool size s.Let be the
testing

18



infection rate. Then pN individuals are infected. In a worst
case partitioning of the pool, we will have all the p/N individuals
to be in different pools. Therefore % — pN many pools are not
infected. Therefore the maximmm number of tests required is

r
%+UJN]*5

1.3 MULTI POOLING

The multi-poocling strategy consists of multiple pooling tests.
At first level we use a pool size of s. In the next round all
positive pools are split into two. That is, we consider pools of
size 3. In the third round, we split the positive pools from the
second round into two (size 7 each ). The process is continued
until the pool size becomes one or all individuals are tested
separately. This is the best strategy to reduce the number of
tests. Unfortunately, it takes multiple pooling tests taking too
much time for a positive individual to know the result of the
test. Moreover, multi-pooling strategy works only if the rate of

infection is low.

Expected number of tests

In this subsection we find the expected number of tests required.
Let Ny be the initial population size, g; the rate of non-infection

and s be the starting pool size. The total number of infocted is

19



q1 N1 and the total number of tests in the first round (denoted
by ET,)is

N
ETy = —
s
The probability that a pool is infected in the first round is

1 — ¢f Hence the expected number of positive pools in the first

round is

N
Py =—(1-gj)
3
and the population to be tested is N = Ni(1 — ¢f).

Let us now calculate the number of tests in the second round.
The probability of non-infection in the second round is g2 = 97‘.;,"“:-‘

We now partition the N3 individuals into pools of size s and tests

them. This gives us, the total number of tests in this round to be

3"‘?‘&. Now , Look at a pool from the first round which contains

exactly one positive individual. The second round splits the

pool into two. Testing the non-positive split will immediately

tell us that the other split is positive an information we gauged
without testing that pool. The expected number ol pools with

exactly one infection is Singleton Pool S, 8 =M1 —-G*l)qf'l.

Therefore the expected number of tests in the second round is

20)



3
ET =2(p1 - 81) + 55‘1

We progress by considering further reduction in the pool
size. Thus the expected number of tests in this multi-pooling
strategy comes out to be BT}, for k rounds of pooling (k =

log s).

The above analysis can be approximated by assuming that the
a positive pool in the first round will contain only one infected
individual. If the infection is low, this is almost surely going to
happen. The expected number of tests required if a pool of size

s contains one infected individual is approximately
3
3 logs+1

Assuming a population of size N and a probability of infec-
tion of p we get the expected number of tests required to be

N

3pN
Ezp(s,p) =~ pTlogs s

1.4 ADVANTAGES OF POOLED TESTING

Pooling--sometimes referred to as pool testing or pooled testing
means combining the same type of specimen from several people

and conducting laboratory test on the combined pool of speci-
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mens to detect SARS-CoV-2, the virus that causcs COVID-19.
Pooled tests that return positive results will require each speci-
men in the pool to be retested individually to determine which

individual(s) are positive.

Pooling allows laboratories to test more samples with fewer test-

ing materials Which means that more people can be tested in

locations where testing resources are limited. Testing has been

touted as one of the best ways to prevent the spread of the virus.

Yet, throughout the pandemic, access to testing has often been

limited, people have had to wait in long lines, and results have

been delayed at times for several weeks due to a backlog of tests

at laboratories.Hence it saves time and manpower.

Pooled testing lowers manpower and increases the testing ca-
pacities of labs and also speeds up results . It allows testing
facilities to process a large number of samples rapidly .More
samples can be processed in a short time per iod . It reduces the

total number of tests that needs to be done .

Pooling samples reduces the use of limited reagents , which is

difficult to get when the demand is high . A study shows that

pooling anywhere from 4 to 30 individual samples is an efficient

strategy to cdefect the SARS-CoV-2 virus without sacrificing test

gensitivity .



Pooled testing is better than traditional testing when the rate
of infection is less than 20 % . It can be done even for an infec-
tion rate of 20-22 % .Pooled testing becomes significantly better

when the rate of infection is very low.



1.5 DISADVANTAGES OF POOLED TESTING

The idea of pooled COVID testing seems like a great idea at first
glance, but it comes with its own set of issues. Pooled testing
is defined as "combining respiratory samples from several peo-

ple and conducting one laberatory test on the combined pool of

samples.”

Unfortunately, there are problems with pooling COVID tests.

Pooling can only be used in areas or situations where the num-

ber of positive test results is expected to be low-for example,

in locations with a low prevalence of SARS-CoV-2 infections.

When infection rates are high, too many pools cowme back with

positive results. This ‘would require more individual tests, thus

making the pooling method less efficient and more complicated.
Pooled COVID testing can increase the number of false-negative
cases (when someone who is infected with the virus falsely tests
as not having it) as well as decrease the sensitivity of COVID-19

detection, especially in people who are asymptomatic or had a

low viral load.

False negatives can increase the risk of an outbreak, defeating
hole point of testing. Additionally, while pooled testing can

the w
of tests needed, the need to retest all the in-

decrease the number
dividuals in pools that tested positive lessens the decrease (and
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expense savings).

Pooled testing is cffective only if prevalence and transmission

of the discase are low in the population . Pooled testing is not

meant for people at high risk like close contacts health workers

or those who come under high risk .

Pooled testing is useful for population screening and resource-
restricted settings, due to its ability to stretch COVID-19 testing
supplies, increase the number of patients tested, and increase
the number of cases detected. However, there are drawbacks,

including the complicated workflow, lower sensitivity, and the

need to repeat tests from positive pool.
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2 EPIDEMOLOGICAL MODELING

The idea that transmission and spread of infectious diseases fol-
lows laws that can be formulated in mathematical language is
old. In 1766, Daniel Bernoulli published an article where he
described the effects of smallpox variolation (a precursor of vac-
cination) on life expectancy using mathematical life table anal-
ysis . However, it was only in the twentieth century that the
nonlinear dynamics of infectious disease transmission was really
understood. In the beginning of that century there was much
discussion about why an epidemic ended before all susceptibles
were infected with hypotheses about changing virulence of the

pathogen during the epidemic.

The central idea about transmission models, as Dp]l}ﬂﬁed to
statistical models, is a mechanistic description of the transmis-
sion of infection between two individuals. This mechanistic de-
scription makes it possible to describe the time evolution of an
epidemic in mathematical terms and in this way connect the
individual level process of transmission with a population level
description of incidence and prevalence of an infectious disease.
The rigorous mathematical way of formulating these dependen-
cies leads to the necessity of analyzing all dynamic processes
that contribute to disease transmission in much detail. There-

fore. developing a mathematical model helps to focus thoughts
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on the essential processes involved in shaping the epidemiology
of an infectious disease and to reveal the parameters that are
most influential and amenable for control. Mathematical mod-
eling is then also integrative in combining knowledge from very
different disciplines like microbiology, social sciences, and clini-

cal sciences.

In this paper, we develop a2 mathematical model for the
spread and control of the coronavirus disease. Understanding
the early spread dynamics of the infection and evaluating the
effectiveness of control measures is crucial for assessing the po-

tential for sustained transmission to occur in new areas.

Epidemiology is essentially a population biology discipline
concerned with public health. As such, epidemiology is thus
heavily influenced by mathematical theory. The reason is that
most phenomena observed at a population level are often com-
plex and difficult to deduce from the characteristics of an iso-
lated individual. For example, the prevalence of a disease in
a population is only indirectly connected to the course of dis-
ease in an individual. In Chis context, the use of mathematical

models aims to uncarth processes from a large-scale perspective.



The SIR Model Or The Differential Eﬂyution Model

As the first step in the modeling process, we iddentily the in-
dependent and dependent variables. The independent. variable
is time t, measured in days. We consider two rolated sets of
dependent variables.

The first set of dependent. variables counts people in each of the
groups, each as a function of time:

S = S(t) is the number of susceptible individuals, /' =1 (t) is
the number of infected individuals, and R = ER(t) is the number

- - - I
of recovered individuals.

The second set of dependent variables represents the frac-
tion of the total population in cach of the three categories. So,
if N is the total population , we have
s(t) = S(t)/N, the susceptible fraction of the population, i(t) =
I(t)/N, the infected fraction of the population, and r(t)
R(t)/N, the recovered fraction of the population.

At cach time , s(t) + i(t) -+ r(t) = 1.

1. The ODE of Susceplible is, .

s

e —bs(1) (L) (3)



where b is the number of contacts per day by the infected

individuals that are sufficient to spread the disense.
2. The ODE of Recovered is "r’ = i (1)

where k is the infected group that will recover during any

given day.

3. The ODE of Infected is 4 4 . dr — )

Finally, we complete our model by giving each dillorential equa-
tion an initial condition.

2.1 Development of a Mathematical Model

We segregated human hvmga mto four mnl.umnmtmu groups
of pupils, as of the following. Susceptible, Revealed (not so
far transmittable), Transmittable Separated (i.c., inaceessible,
healthier, or else no lonpest transmitiable).

In order to formulate the model mathematically, we have di-
vided total population N(t) into seven mutually exelusive com-
partinents on the basis of their disense status naely: suscepti-
ble (S(t)), exposed (£(1)), asymptomatic infectod (A(t)), symp-

tomatic infected hut not quarantined (1(£)), symptomatic and

quarantined infected (Q(1)), hospitalised and isolnted mlected
(H(t)) and recovered (12(1)) population, So at any Lime t total
population, N(t) = S(t)- F () + A+ I(1) - Q) 11 () + 13(t)
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a susceptible person may be infected by the close contact with
a infected person.

Now we move to the most iimportant part |
Let S(t) be the total number of susceptibles of Lhe disease.
I(t) be the total munber of infected any given point. of time and
R(t) be the total nmmber of Removed people (that is the cate-
gory of
population that is either recovered or dead )

Now we make certain assumptions

1. We make assnmption that the pandemic is sulficently short
| | ;

and the total population remains constant.

2. The second assumption model relates the way in which dis-
case Is transmitted. ie. rale of infected proportion (r) «

rate of contact between susceptbles and infectod.

3. We assume a constanl rate at which infectives die or recover
and let it be R .

Now we can form certain linear ODE's based on Lhese data:

(S g
Y [S (4)

which denotes the inercase in the muber of susceptbles,

Y18 —ar
ar (5)
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which denotes the increase in the number of infoetives.

d i}
H = @ (6)

which is the rate of removed proportion.

Now , considering the initial conditions

S =258

.!r = I[}
and

=0

(since in the begining of pandemic no one is removed),

We know,

dS dI dR
. — e —— 7
qihgm g = (7)

dS+I+R) _

0
dt

==
From the initial conditions , we can write , S-+/ -+ R = Sy+1p
Now we come to the important ¢uestions, Will the disease

spread 7
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Consider the equation,

ilS
E':- =—¢[8 (8)

we know the value of 7 | T and S are always positive bul we have
a negative value for ‘;Il% ;
So that means the value of S is always less than its initial value

So-
=5 < 5 .

so we gel ,

:—g < I{rSy — a)
If
’ a 1
l‘.-'ﬂ -—_——— -,
o

then the discase will spread , where ¢ = = the Conlact Ratio

which is the fraction of population that comes inlo contact with
an infected individual,
We can rearvange the inecuality ns

5

L (I -

()

where Ry is the Basic Reproductive Ratio .



Tl";ll

i

I

This depicts the number of secondiry infections possible,

Thus Ky pgives us an iden nhoul if o person is infeeted , Lthe

possible number of seeondary infoctions caused by Lhem . For a
Seasonal Flu it is somewhere between | Lo 1.3, but for COVID

1900 has o value greater than 3

Now we come Lo another question, What will he the mas-

imum number of infectives at any given poinl of time ?

From above cquations we gel |

ill B r1S - ul
dS IS

i
==l =5 (9)
|
= =14 —
I'IIH
where
i |
oy

| . I ;
s [ +8 S — fy 1 & TR
l"-' 'l'll

So the maxinnn value of T ocears when

S
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Figure 1:

1
= Imor = fo+ S0 — E]H{f}-gﬂ}

Here the value of J,a. depends on ¢ (The Coniact Ratio)

From this we plot a graph |,

In the begining of the pandemic , the value of 4 is supposed
to be very high, sinee a large munber of people are suseepted to

be in contact.



= Maximum possiblity of infected people at any given
time

= Total Population — f (7)

i 1 h
= Iy+ 8 — Ehl[:qbu]

The function f(z) depends completely on value of g,

How many people will be infected by this cdiscase?

Assume total population as constant,
Solving this w

¢ get no: of removed population
lT{Bm‘l} = ‘Si::lul — Iy + Sy

1
S(e sezs]] TS
(el ) q 1 [:S J )

1
=Ip+ 5y - Elll [S{]}

This is the solution to our question.
We can represent this graphieally as

So, What does this mean for Covid-19 7

e In short, the answer to our question 1is | 1Yy = qSy >

1 = the disease will spread if ¢ is very large | this means
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Figure 2:

that we should try to reduce the number of patients having

contact with the infected

e Maximum number of infected people at a given point of
time is [Total Population - f(g)], where f(g) is a function

of g(rate of people having contact with the infected).

e The total number of people that may be infected by the
disease is [Total Population - g(g)], where g(g) is another

function of g

From the concept of Epidemological Modeling we can predict
the pattern of spread of COVID-19 and this tells us how to alter
things and to control the outbreak of pandemic by reducing the

value of ¢. So we should strictly follow the guidelines made by
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government and Health Olficials , maintain social distancing and
use masks Lo prevent the spread and thus reducing the value of

¢ which helps in controlling the discase outhreak.
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CONCLUSION

Testing is necessary Lo reopen the economy an schools, how-

ever it's alimost impossible to do thig using convenlional testing

methods.The recently authorized technique called sample pool-

ing significantly increase the number of people being tested,
Mathematical models are a key tool for guiding public health
measures, and outputs from epidemological modeling analysis
should be considered alongside numerous factors (such as poten-
tial economic and mental health effects of interventions) when
deciding how to intervene. Perfeet data are not available, so
modeling requires assumptions made about the efects of dif-
ferent interventions on contact rates between hosts. " Models
demonstrated the need for the current lockdown, and model-

Ing must remain a key tool for informing policy.

Thus we can conclude that Mathematics play o key role in
this hattle against. COVID-19.Mathematical functions can be
applied as tools Lo deseribe the dynamics of how infectious dis-
eases propagate among people. Mathematieal Modeling gener-
ales a picture or a ‘model’” of the dynamies of the disease, which
can be visually represented by graphs, charts and comparative

Lables,
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