2021 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)

Proceedings

6 - 10 December 2020 Virtual Symposium

IEEE Catalog Number: CFP21U63-ART ISBN: 978-1-6654-4249-7

2021 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)

Proceedings

6 - 10 December 2020 Virtual Symposium

Sponsored by

The Institute of Electrical and Electronics Engineers Geoscience and Remote Sensing Society

> IEEE Catalog Number: CFP21U63-ART ISBN: 978-1-6654-4249-7

TABLE OF CONTENTS

TU4-H1: LAND, FOREST & ENVIRONMENT-1

TU4-H1.2: TIME SERIES ALOS-2/PALSAR-2 SAR DATA AND MULTI-TEMPORAL ICESAT-2 LIDAR
TU4-H1.3: IDENTIFICATION OF BARK BEETLE INFESTATION IN PART OF BOHEMIAN
TU4-H1.4: TIME-SERIES ANALYSIS OF C- BAND AND L-BAND SAR BACKSCATTER IN
TU4-H1.5: PLANNING FOR MITIGATING FLASH FLOOD EVENTS: A CASE OF ALMORA
TU4-H2: OCEAN & OCEANSAT-1
TU4-H2.3: OCM-3 AND SSTM-1 PAYLOADS ON OCEANSAT-3 (EOS-06) MISSION
Somya Sarkar, Vishnu Patel, Indian Space Research Organisation, India TU4-H2.4: OCEANSAT-3 (EOS-6) PRODUCTS AND APPLICATIONS
Somya Sarkar, Vishnu Patel, Indian Space Research Organisation, India TU4-H2.4: OCEANSAT-3 (EOS-6) PRODUCTS AND APPLICATIONS

FU4-H3.3: SIMULATION AND ANALYSIS OF STAGGE	ERED PRI SEQUENCE FOR NISAR	37
Samneet Thakur, Krishna Murari Agrawal, V Manavala	n Ramanujam, Space Applications Centre, India	

Priya M V, Dhanya S Pankaj, COLLEGE OF ENGINEERING TRIVANDRUM, India

Kousik Biswas, Debashish Chakravarty, Pabitra Mitra, Indian Institute of Technology Kharagpur, India; Rishabh Panda, Kalinga Institute of Industrial Technology, India; Pavan Kumar M., MVJ College of Engineering, India; Arundhati Misra, Space Applications Centre, ISRO, India; Dibyendu Ghosh, Intel Corporation, India; Prosenjit Banerjee, One Plus, India

TU4-H4: AGRICULTURE, HYDROLOGY & CRYOSPHERE-1

TU4-H4.2: TRISHNA: AN INDO-FRENCH SPACE MISSION TO STUDY THE 49 THERMOGRAPHY OF THE EARTH AT FINE SPATIO-TEMPORAL RESOLUTION Jean-Louis Roujean, Gilles Boulet, Olivier Hagolle, CESBIO, France; Bimal Bhattacharya, M.R. Pandya, S.K. Singh,M.V. Shukla, M. Mishra, D. Adlakha, M. Sarkar, M. Sekhar, ISRO, India; Philippe Gamet, Emilie Delogu, PhilippeMaisongrande, CNES, France; Albert Olioso, Mark Irvine, INRAE, France; Xavier Briottet, ONERA, France; AulineRodler, CEREMA, France; Emmanuelle Autret, IFREMER, France; Isabelle Dadou, Alexei Kouraev, LEGOS, France;Ghislain Picard, IGE, France; Cécile Ferrari, IPGP, France; Thomas Vidal, ACRI, France; Kaniska Mallick, LIST,Luxembourg
TU4-H4.3: FLOOD FREQUENCY ANALYSIS USING ERA5-LAND BASED PRECIPITATION FOR
TU4-H4.4: CNN-BASED FUSION AND CLASSIFICATION OF MULTI-TEMPORAL SENTINEL-1
TU4-H4.5: COMPARISON OF SPECKLE NOISE FILTERS ON CROP CLASSIFICATION BASED 61 ON SENTINEL-1 SAR TIME-SERIES 61 Arturo Velasco Alvarez, Doctoral Student, Canada; Bernhard Rabus, Mirza Faisal Beg, Professor, Canada
TU5-H1: LAND, FOREST & ENVIRONMENT-2
TU5-H1.1: A MODIFIED NEURAL NETWORK FOR LAND USE LAND COVER MAPPING OF
TU5-H1.2: GENERATION OF DETAILED CLASSIFICATION MAPS USING
TU5-H1.4: MAPPING GLOBALLY USING MULTITEMPORAL SENTINEL-1 SAR: A
TU5-H1.5: A PRELIMINARY STUDY AND ANALYSIS ON EXTRACTION OF URBAN AREA
TU5-H1.6: GABOR AND PCA FEATURE-BASED UNSUPERVISED CHANGE DETECTION IN
TU5-H2: OCEAN & OCEANSAT-2
TU5-H2.1: OCEANSAT-3 APPLICATIONS FOR CYCLONE STUDIES

Mrutyunjay Mohapatra, Ashim Mitra, India Meteorological Department,Lodi Road, New Delhi, India

TU5-H2.2: OCEANSAT3 APPLICATIONS FOR OCEAN STATE FORECAST AND POTENTIAL
FISHING ZONES SERVICES
Dr. Balakrishnan Nair, Nimit Kumar, Aneesh Lotlike Lotlike, Anuradha Modi, Sudheer Joseph, Indian National center for Ocean Information Services, India
TU5-H2.3: COMPARATIVE ANALYSIS OF CHLOROPHYLL-A MEASUREMENTS OF
Rimjhim Bhatnagar, Mini Raman, Marine Ecosystem Division, Space Applications Centre, ISRO, Ahmedabad, India
TU5-H2.4: ESTIMATION OF SHALLOW WATER BATHYMETRY USING LINEAR WAVE
Mohammed Suhail, Runjhun Chandra, Muralikrishnan S, Nagamani PV, National Remote Sensing Centre (NRSC), India
TU5-H2.5: INVESTIGATION OF THE RELATIONSHIP OF CYGNSS OBSERVABLES WITH
Megha Maheshwari, Akhilesh Kumar, Nirmala Srini, U R Rao Satellite Centre, India; Arun Chakraborty, IIT kharagpur, India
TU5-H2.6: COASTAL UPWELLING DURING NORMAL AND EL NINO YEARS: CASE STUDY
Debojyoti Ganguly, Mini Raman, Space Applications Centre, India
TU5-H2.7: RELATING BIOLOGICAL PRODUCTIVITY TO TEMPERATURE FRONTS IN THE 111 NORTHERN INDIAN OCEAN
Amala Mahadevan, Jing He, Gualtiero Jaeger, Woods Hole Oceanographic Institution, United States
TU5-H3: ADVANCED REMOTE SENSING-2
TU5-H3.1: MODEL-BASED NINE-COMPONENT SCATTERING MATRIX POWER
DECOMPOSITION OF POLSAR DATA
Rashmi Malik, Onkar Dikshit, IIT Kanpur, India; Gulab Singh, IIT Bombay, India; Yoshio Yamaguchi, Niigata University, Japan
University, Japan TU5-H3.2: RFI DETECTION AND SUPPRESSION IN L & S BAND AIRBORNE SAR
 University, Japan TU5-H3.2: RFI DETECTION AND SUPPRESSION IN L & S BAND AIRBORNE SAR
 University, Japan TU5-H3.2: RFI DETECTION AND SUPPRESSION IN L & S BAND AIRBORNE SAR
 University, Japan TU5-H3.2: RFI DETECTION AND SUPPRESSION IN L & S BAND AIRBORNE SAR
 University, Japan TU5-H3.2: RFI DETECTION AND SUPPRESSION IN L & S BAND AIRBORNE SAR
 University, Japan TU5-H3.2: RFI DETECTION AND SUPPRESSION IN L & S BAND AIRBORNE SAR
 University, Japan TU5-H3.2: RFI DETECTION AND SUPPRESSION IN L & S BAND AIRBORNE SAR

Suhas Kale, Bharti Gawli, Dr. B.A.M.University, Aurangabad (MS), India; Shafiyoddin Sayyad, Milliya College, Beed, India, India

TU5-H4.5: CNN BASED WATER STRESS DETECTION IN CHICKPEA USING UAV BASED
Adduru U G Sankararao, Gattu Priyanka, Rajalakshmi P., Indian Institute of Technology Hyderabad, India; Sunitha Choudhary, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
TU5-H4.6: RAINFALL MAPPING USING MACHINE LEARNING ALGORITHM
WE1-H4: STUDENT SESSION-1
WE1-H4.1: INTER AND INTRA-ANNUAL SPATIO-TEMPORAL VARIABILITY OF HABITAT
WE1-H4.2: DEEP LEARNING-BASED EMULATOR FOR 6S ATMOSPHERIC CORRECTION
Maitrik Shah, Student Member, IEEE, India; Mehul Raval, Senior Member, IEEE, India; Srikrishnan Divakaran, Ahmedabad University, India, India
WE1-H4.3: PREDICTING UNKNOWN CLASSES ON HYPERSPECTRAL IMAGE DATA USING
Surabhi Khare, Liverpool John Moores University, Liverpool, UK; upGrad Education Pvt. Ltd., Worli, Mumbai - 400018, India; Sanchit Aggarwal, upGrad Education Pvt. Ltd., Worli, Mumbai - 400018, India
WE1-H4.4: SEMANTIC SEGMENTATION OF URBAN AREAS IN POLARIMETRIC SAR IMAGING
WE1-H4.5: A MACHINE LEARNING FRAMEWORK FOR DATA FILTERING: A CASE STUDY
Karan Bhuva, Parth Patadiya, Hetvi Julasana, Suchit Purohit, Gujarat University, India; Megha Bhatt, Physical Research Laboratory, India; Deepak Dhingra, Indian Institutes of Technology, Kanpur, India; Urs Mall, Max Planck Institute for Solar System Research, Germany
WE1-H4.6: A DEEP LEARNING FRAMEWORK FOR FUSION OF SAR AND OPTICAL
Neeharika Gupta, Thota Sivasankar, NIIT University, India; Hari Shanker Srivastava, Indian Institute of Remote Sensing, ISRO, India; Parul Patel, Space Applications Centre, ISRO, India
WE1-H4.7: INTEGRATION OF SAR (SENTINEL -1A) AND OPTICAL (SENTINEL -2A) DATA FOR
Raja Biswas, Virendra Singh Rathore, Akhouri Pramod Krishna, Birla Institute of Technology, India; Gulab Singh, Indian Institute of Technology, India; Anup Kumar Das, Space Applications Centre, India
WE1-H4.8: ITERATIVE EMPIRICAL ORTHOGONAL FUNCTION IN GAP FILLING OF GPS
Neha Neha, Birla Institute of Technology and Science, Pilani, Pilani Campus, India; Sharat Mehrotra, Himanshu Verma, Sumanta Pasari, Birla Institute of Technology and Science, Pilani, Pilani Campus, Jhunjhunu – 333031, Rajasthan, India
WE1-H4.9: AN IMPROVED IHS IMAGE FUSION ALGORITHM USING MEDOID INTENSITY

WE1-H4.10: INTEGRATION OF DESIS WITH MULTISPECTRAL DATA FOR GEOLOGICAL
WE1-H4.11: HYPERSPECTRAL DATA ASSIMILATION AND ROAD MATERIAL EXTRACTION
WE1-H4.12: SENSITIVITY ANALYSIS OF GNSS-IR BASED MULTIPATH PHASE FOR SOIL
Sushant Shekhar, Rishi Prakash, Anurag Vidyarthi, Graphic Era Deemed to be University, India; Dharmendra Kumar Pandey, Deepak Putrevu, Arundhati Misra, ISRO, India
WE1-H4.13: OBSERVING SEASONAL VELOCITY CHANGES OF SVALBARD GLACIERS
WE1-H4.14: DUAL POLARIMETRIC SAR SIGNATURE FOR HUMAN-MADE TARGET
Abhinav Verma, Subhadip Dey, Narayanarao Bhogapurapu, Avik Bhattacharya, Indian Institute of Technology Bombay, India; Carlos Lopez-Martınez, Universitat Polit`ecnica de Catalunya (UPC), India
WE1-H4.15: STUDY ON PROACTIVE AND REACTIVE ROUTING APPROACHES FOR FLYING
Sagnik Banerjee, Snehasish Basu, Arindam Basak, Kalinga Institute of Industrial Technology, BHUBANESWAR, India;
Tamesh Halder, Debashish Chakravarty, Indian Institute of Technology, Kharagpur, India; Amit Kumar Das, Institute of Engineering & Management, Kolkata, India; Sajal Sarkar, Power Grid Corporation of India Ltd., India; Arundhati Mishra Ray, Indian Space Research Organization, India
WE2-H1: AGRICULTURE, HYDROLOGY & CRYOSPHERE-3
WE2-H1.2: CLASSIFICATION AND IDENTIFICATION OF CROPS USING DEEP LEARNING
Abhishek Narvaria, International Institute of Information Technology (IIIT) Bangalore, India; Uttam Kumar, Kanumuru Shree Jhanwwee, Anindita Dasgupta, IIIT Bangalore, India; Gurdeep Jyoti Kaur, Birla Institute of Technology (BIT) Mesra, India
WE2-H1.3: A GEO-SPATIAL APPLICATION FOR BROWN PLANT HOPPER PEST RISK
WE2-H1.4: ANALYSIS OF SVALBARD GLACIER MOVEMENT AT DIFFERENT PENETRATION
WE2-H1.5: ESTIMATION OF ICE THICKNESS DISTRIBUTION OVER RAIKOT GLACIER IN

WE2-H2: GEOSCIENCE-1

DATASETS FOR DEMARCATION OF STRUCTURAL PATTERN OF BASE METAL BEARING CARBONATE ROCKS OF ZAWAR REGION Ronak Jain, Banasthali Vidyapith, India; Harsh Bhu, Ritesh Purohit, Mohanlal Sukhadia University, Udaipur, India WE2-H2.3: DAMAGE ASSESSMENT POST SEVERE CYCLONIC STORM "YAAS" USING 173 SYNTHETIC APERTURE RADAR Hrishikesh Kumar, D Ram Rajak, Space Applications Centre-ISRO, India; Tajdarul Hassan Syed, Indian Institute of Technology, Kanpur, India WE2-H2.4: SOIL EROSION MODELING AND PRONE AREA PRIORITIZATION USING177 GIS-BASED RUSLE MODEL, CASE OF THE BOUHANIFIA BASIN IN WESTERN ALGERIA Youcef Fekir, Mohamed Amine Hamadouche, University Mustapha Stambouli of Mascara, Algeria; Khalladi Mederbal, University of Ibn Khaldoun Tiaret, Algeria; Mohamed Larid, University of Abdelhamid Ibn Badis Mostaganem, Algeria; Djamel Anteur, University of Moulay Taher Saida, Algeria BY INSAR OBSERVATIONS: PRELIMINARY RESULTS Himanshu Verma, Sumanta Pasari, Birla Institute of Technology and Science, India; Yogendra Sharma, Indian Institute of Technology Kanpur, India WE2-H3: DATA ANALYSIS METHODS-1 WE2-H3.2: ARIMA MODEL TO PREDICT THE COVID-19 PANDEMIC CASES IN TELANGANA 185 STATE Prisilla Javanthi, St. Joseph's Degree and PG College, India; Muralikrishna Ivvanki, Former Director (R & D) JNTU, India IMAGE UNMIXING Fatemeh Kowkabi, Marvdasht Branch, Islamic Azad University, Iran; Ahmad Keshavarz, Persian Gulf University, Iran; Lalit Kumar, EastCoast Geospatial Consultants, Australia Anand Mehta, Institute of Infrastructure Technology Research and Management, India; Sumanta Pasari, Birla Institute of Technology and Science Pilani, India TIME-SERIES DATA

Neha Neha, Birla institute of Technology & Science, Pilani, India; Rohan Marwah, Sumanta Pasari, Birla Institute of Technology and Science, Pilani, Pilani Campus, India

WE2-H4: STUDENT SESSION-2

Snehasish Basu, Sagnik Banerjee, Arindam Basak, Kalinga Institute of Industrial Technology, BHUBANESWAR, India; Tamesh Halder, Debashish Chakravarty, Indian Institute of Technology, Kharagpur, India; Amit Kumar Das, Institute of Engineering & Management, Kolkata, India; Sajal Sarkar, Power Grid Corporation of India Ltd., India; Arundhati Mishra Ray, Indian Space Research Organization, India

Faseela V S, Smitha Asok V, All Saints College, India; Sanid Chirakkal, Deepak Putrevu, Space Applications Centre, India

WE2-H4.3: SIMULTANEOUS EVALUATION OF THE TARGET SCATTERING-TYPE
WE2-H4.4: RETRIEVAL OF GRAPE CROP PHENOLOGY METRICS FROM TIME SERIES OF
WE2-H4.5: CROP GROWTH ASSESSMENT USING SENTINEL-1 GRD SAR DESCRIPTORS
WE2-H4.6: MODERN MATHEMATICAL MODELLING APPROACHES FOR OPTIMIZED
WE2-H4.7: ANALYZING THE NUMBER OF LOOKS FROM STOCHASTIC DISTANCE IN
WE2-H4.8: UNFOLDING THE CONTRIBUTION OF ENVIRONMENTAL AND
WE3-H1: AGRICULTURE, HYDROLOGY & CRYOSPHERE-4
WE3-H1.1: RETRIEVAL OF MASS BALANCE OF AUSTRE GRØNFJORDBREEN IN THE
Rajat Rajat, Virendra Rathore, Birla Institute of Technology Mesra, India; Bala Nela, Gulab Singh, Indian Institute of Technology Bombay, India; Andrey Glazovsky, Institute of Geography, Russian Academy of Sciences, Russia
WE3-H1.2: SNOW GRAIN SIZE AND ALBEDO RETRIEVALS FOR A SNOW AGING EVENT – A
WE3-H1.3: SNOW COVER CHARACTERIZATION USING L-BAND POLSAR DATA IN PARTS OF
Sanjeev Kumar, Abhishek Narayan, Chander Shekhar, Snehmani Snehmani, DGRE Chandigarh, India; Gulab Singh, CSRE IIT Bombay, India; Devinder Mehta, Dept of Physics PU Chandigarh, India
WE3-H1.4: SENSITIVITY ANALYSIS OF CROP BIOPHYSICAL PARAMETERS USING

SAR DATASET Shafiyoddin Sayyad, Ajit Kumar Yadav, Milliya College, Beed, India, India; Dharmendra Kumar Pandey, Anup Kumar Das, Space Application Center (ISRO), India
WE3-H2: GEOSCIENCE-2
WE3-H2.1: USE OF SHANNON INFORMATION ENTROPY IN EARTHQUAKE NOWCASTING
WE3-H2.3: SCATTERING MECHANISM BASED DECISION RULE CLASSIFIER FOR LAND
WE3-H3: DATA ANALYSIS METHODS-2
WE3-H3.2: LONG TERM PREDICTION OF RAIN RATE AND ATTENUATION USING ANN AND
WE3-H3.3: FUSION OF LOW-COST UAV POINT CLOUD WITH TLS POINT CLOUD FOR
WE3-H3.4: MULTIMODAL AND MULTI-TEMPORAL SPATIAL DATA ANALYSIS IN GOOGLE
WE3-H3.5: GRADIENT BASED SPECTRAL SIMILARITY MEASURE FOR HYPERSPECTRAL
WE3-H3.6: ASSESSMENT OF TOPOLOGICAL PATTERN OF ROAD NETWORK: A CASE
WE3-H3.7: URBAN HEAT ISLAND AND ITS IMPACT ON IMPERVIOUS SURFACES DURING
WE3-H4: LAND, FOREST & ENVIRONMENT-3
WE3-H4.1: A COMPARATIVE EVALUATION OF IMAGE CLASSIFICATION ALGORITHM IN A

Misal Shah, Rajesh Iyer, St Xavier's College, India; Akhil S. Nair, Deepak H. Gadani, School of Science, India; Tejas Turakhia, Tejas V. Shah, Deepali H. Shah, Gujarat Technological University, India; Mehul R. Pandya, ISRO, India

Jalpesh Dave, Himanshu Trivedi, N. V. Patel College of Pure and Applied Sciences, India; Mehul Pandya, SAC-ISRO, India; Vishal Pathak, St. Xavier's College, India; Dhiraj Shah, Sir P. T. Sarvajanik College of Science, India

Sushant Shekhar, Rishi Prakash, Graphic Era Deemed to be University, India; Dharmendra Kumar Pandey, Deepak Putrevu, Arundhati Misra, ISRO, India; Anurag Vidyarthi, Graphic Era Deemed University, India

TH2-H1: NISAR-1

TH2-H1.3: NISAR DATA CALIBRATION PLAN 273 Shweta Sharma, Saurabh Tripathi, Santhisree B., Jayasri P.V., V Manavalan Ramanujam, Usha Sundari Ryali, Rakesh Bhan, Raj Kumar, ISRO, India

Dharmendra Kumar Pandey, Anup Das, Deepak Putrevu, Arundhati Misra, Raj Kumar, Indian Space Research Organization, India; Srinivasa Teja Noothi, Shashi M., National Institute of Technology, Warangal, India; Prashant K. Srivastava, Banaras Hindu University, Varanasi, India; Om Pal, Kapil Rohilla, Ravindra Prawasi, Nijbul H. Sekh, Sushma Bisht, Haryana Space Applications Centre, Hisar, India

TH2-H2: AI IN RS & GIS + BIG DATA-1

Vyom Pathak, Brijesh Bhatt, Dharmsinh Desai University, India; Arvind Sahay, Mini Raman, Indian Space Research Organization, India

Siddhartha Bhattacharyya, Rajnagar Mahavidyalaya, Birbhum, India; Tulika Dutta, Somnath Mukhopadhyay, Assam University, India

Avinash Chouhan, North Eastern Space Applications Centre, India; Aryan Agrawal, Arijit Sur, Indian Institute of Technology Guwahati, India

Chinmoy Kar, Sikkim Manipal Institute of Technology, India; Sreeparna Banerjee, Maulana Abul Kalam Azad University of Technology, India

TH2-H3: MISSION, SENSORS & CALIBRATION-1

TH2-H3.2: EFFECT OF LOOK DIRECTION AND FREQUENCY ON IDENTIFICATION OF
TH2-H3.3: RESOURCESAT2- AWIFS SENSOR ON-ORBIT RADIOMETRIC CONSISTENCY
TH2-H3.4: DESIGN, PROCESS FLOW AND IMPLEMENTATION OF NOVASAR-1308SCENE-BASED DATA PRODUCT GENERATION AT IMGEOSHaripriya S, Samvram Sahu, Raghvendra Joshi, Raji Jose, Ushasundari HSV, Santhisree B, Sauvic Dutta, SuryakalyaniM, Sitakumari EVS, Manjusarma S, NRSC/ISRO, India
TH2-H3.5: EFFECTIVE UTILIZATION OF A LOW-COST SOLUTION FOR REMOTE
TH2-H4: ATMOSPHERE, CAPACITY BUILDING-1
TH2-H4.2: STUDY OF PARTICULATE MATTER OVER AHMEDABAD AND GANDHINAGAR

OVER INDIA *Khushali Tank, Rajesh Iyer, St. Xavier's college (Autonomous), India; Tejas Turakhia, Tejas V. Shah, Deepali H. Shah, Gujarat Technological University, India; Akhil S. Nair, Deepak H. Gadani, University School of Sciences, Gujarat University, Ahmedabad, India; Mehul R. Pandya, Space Application Center, ISRO, India*

Megha Maheshwari, Nirmala Srini, U R Rao Satellite Centre, India

Triya Belani, Rajesh Iyer, St. Xavier's College (Autonomous), India; Tejas Turakhia, Tejas V. Shah, Deepali H. Shah, Gujarat Technological University, India; Akhil S. Nair, Deepak H. Gadani, Gujarat University, India; Mehul R. Pandya, ISRO, India

TH3-H1: NISAR-2

TH3-H1.5: OIL PLATFORM DETECTION FROM AIRBORNE L- AND S-BAND SAR DATA
TH3-H1.6: IMPACT OF TRAINING DATA QUALITY ON MACHINE LEARNING BASED CROP
TH3-H1.7: EVALUATING THE EFFECT OF POA COMPENSATION ON POLINSAR
TH3-H2: AI IN RS & GIS + BIG DATA-2
TH3-H2.2: LANDSLIDE SUSCEPTIBILITY MODELLING USING DEEP LEARNING AND
TH3-H2.3: SEMANTIC SEGMENTATION OF L&S BAND SAR DATA AFTER TUNING THE
TH3-H3: MISSION, SENSORS & CALIBRATION-2
TH3-H3.2: SINGLE BAND DUAL POLARIZATION GROUND BASED GNSS369REFLECTOMETRY: SYSTEM DESIGN AND FIELD EXPERIMENTSAnanya Ray, Anish Mishra, Shweta Sharma, Vivan Prakash, Vinit Kumar, Akshay Pande, Renuka Tandan, Saumi De, Devendra Sharma, Deepa Sharma, Dharmendra Kr. Pandey, Deepak Putrevu, Vivek Brahmbhatt, Jogeswara Rao, Rakesh Kr. Bhan, Rajeev Jyoti, Space Application Centre, ISRO, India
TH3-H3.3: WHAT DOES THE NEW RISAT-1A 8-BEAM MRS MODE HOLD FOR THE

APPLICATIONS COMMUNITY?

C Patnaik, Jayaprasad P, Deepak Putrevu, Space Applications Centre, India

TH3-H4: ATMOSPHERE, CAPACITY BUILDING-2

Ravichandran Venkatesh, Bharathidasan University, India; Anup Kumar Das, Space Applications Centre, India; Janakiraman A, CGI Information Systems & Management Consultants, India

Savan Panchal, St. Xavier's college Ahmedabad. Gujarat, India; Tejas Turakhia, Deepali H. Shah, Gujarat Technological University, Ahmedabad, Gujarat, India, India; Akhil S. Nair, Deepak H. Gadani, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India, India; Mehul R. Pandya, ISRO, Ahmedabad, India; Rajesh Iyer, St. Xavier's college(Autonomous), Ahmedabad, India; Tejas V. Shah, Gujarat Technological University, Ahmedabad, India

Vaibhav Trivedi, Rajesh Iyer, St. Xavier's College, Ahmedabad, India; Tejas Turakhia, Tejas V. Shah, Deepali H. Shah, Gujarat Technological University, Ahmedabad, India; Akhil S. Nair, Deepak H. Gadani, Gujarat University, Ahmedabad, India; Mehul R. Pandya, Space Applications Center, ISRO, Ahmedabad, India

Yogeshkumar A. Patel, St. Xavier's College (Autonomous), Ahmedabad 380009, India; Tejas Turakhia, Tejas V. Shah, Deepali H. Shah, Gujarat Technological University, India; Akhil S. Nair, Deepak H. Gadani, Gujarat University, India; Rajesh Iyer, St. Xavier's College (Autonomous), Ahmedabad-380009, India, India; Mehul R. Pandya, Space Applications Center, ISRO, Ahmedabad- 380015, India

Shubham Jayswal, Heet S. Joshi, Tejas Turakhia, Akhil S. Nair, Rajesh Iyer, St. Xavier's College (Autonomous), Ahmedabad, India; Mehul R. Pandya, SAC - ISRO, India

FR1-H1: YOUNG PROFESSIONALS

AIRBORNE IMAGES

FR2-H1: ATMOSPHERE, CAPACITY BUILDING-3

FR2-H1.1: A NUMERICAL EXPERIMENT TO STUDY THE EFFECT OF ANTHROPOGENIC
FR2-H1.2: VARIATIONS OF AEROSOL RADIATIVE FORCING DURING COVID-19 IMPOSED
FR2-H1.3: TOPOGRAPHIC AND METEOROLOGICAL CHALLENGES IN DISSEMINATION OF
FR2-H2: UAV BASED RS
FR2-H2.2: OPTIMAL PARAMETER SELECTION FOR UAV BASED PUSHBROOM
FR2-H2.3: UAV-BASED TARGET LOCALIZATION IN DENSE AREAS WITH COMPUTER
FR2-H2.4: ADVANCED IMAGE PROCESSING APPROACH FOR COLOR-TEXTURE ANALYSIS
FR2-H2.5: EFFICIENT APPLICATION OF AI FOR TARGET TRACKING AND MONITORING IN

Vatsala Singh, Mody University of Science and Technology, India; Keshav P. Singh, IIT BHU, India

REFLECTOR ARRAY SITE Santhi Sree Basavaraju, Gowrisankar Sreeram, Niharika Karumuri, Jayasri PV, Vinod M Bothale, NATIONAL REMOTE SENSING CENTER, ISRO, India **FR2-H3: THERMAL REMOTE SENSING** CHANGE: CASE STUDY OVER CHENNAI CITY Anusha Roy, Rahul Harod, Eswar Rajasekaran, Indian Institute of Technology Bombay, India **OPTICAL AND THERMAL DATA** Chandrasekar K, Nidhi Misra, Anurag Mishra, Madhavi P, Abdul Hakeem K, Venkateswar Rao V, NRSC, ISRO, India; Mohammed Ahamed J, NRSC, ISRO, India **PROCESSES: OPPORTUNITIES, SYNERGIES, AND CHALLENGES** Kaniska Mallick, Tian Hu, Ivonne Trebs, Martin Schlerf, Luxembourg Institute of Science and Technology, Luxembourg: Yun Bai, Qingdao University, China; Nishan Bhattarai, U.S. Department of Agriculture, France; Gilles Boulet, Centre d'Etudes Spatiales de la Biosphère, France; Tianxin Wang, Camilo Rey Sanchez, Robert Shortt, Dennis Baldocchi, University of California, Berkeley, United States **ON FIELD-SCALE EVAPOTRANSPIRATION** Rahul Nigam, Bimal K Bhattacharya, Space Applications Centre ISRO, India; Jaychandra Ravi, Parul Patel, Nirma University, India; Devansh Desai, Silver Oak Institute of Science, Silver Oak University, India TEMPERATURE OVER THE ENCLOSED WATER BODIES OF CORAL REEF LAGOON AT LAKSHADWEEP ISLANDS, INDIA Preeti Rajput, Ratheesh Ramakrishnan, Space Applications Centre (ISRO), India **FR2-H4: LUNAR SCIENCE** FR2-H4.2: SPECTRAL CHARACTERIZATION OF VAPORUM DARK MANTLING DEPOSITS AND 453 SURROUNDING REGION USING CHANDRAYAAN-1 MOON MINEROLOGY MAPPER Kumaresan P. R., Saravanavel J, Bharathidasan University, India **ONBOARD ISRO'S CHANDRAYAAN-2 FOR LUNAR MINERAL DETECTION** Mamta Chauhan, Prakash Chauhan, Indian Institute of Remote Sensing (IIRS), India SURFACE USING L-BAND SAR DATA OF CHANDRAYAAN-2 MISSION

Shashi Kumar, Vaishali Chaudhary, Prakash Chauhan, Indian Institute of Remote Sensing (IIRS), ISRO, India; Awinash Singh, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede 7514 AE, The Netherlands, Netherlands

FR2-H4.5: SCATTERING MECHANISMS ASSOCIATED WITH HIGH CIRCULAR	63
POLARIZATION RATIOS FROM YOUNG, LARGE CRATERS ON THE MOON	
Sriram Bhiravarasu, Anup Das, Deepak Putrevu, Dharmendra Pandey, Tathagata Chakraborty, Indian Space Researd	ch
Organization, India	

FOREST STAND HEIGHT ESTIMATION BY INVERSION OF POLARIMETRIC CANOPY SCATTERING MODELS

Faseela V. Sainuddin¹, Sanid Chirakkal², Smitha V. Asok¹, Deepak Putrevu²

1. Department of Environmental Sciences, All Saints' College Thiruvananthapuram 695007

2. Advanced Microwave and Hyperspectral, Techniques Development Group, Space Application Centre, ISRO, Ahmedabad 380015

ABSTRACT

Physical scattering models can be employed for estimating propagation and attenuation of electromagnetic waves through forest canopies. With polarimetric SAR (PolSAR) data (including dual-pol data, by simplifying assumptions), we have enough information to suitably invert these models to estimate important biophysical forest parameters, such as the vegetation stand height. This paper successfully attempts the estimation of forest stand height using two microwave canopy scattering models, viz., single-scattering radiative transfer model and the dielectric cylinder model (with a common rough surface scattering model). The ground measurements were taken from the study area in the Western Ghats region of Kerala. Iterative Optimization method was used to invert the non-linear models and the height of trees were retrieved using dual-pol data from ALOS-2 satellite, over the test sites. The accuracy of model derived heights was estimated by comparing them to the heights of trees measured in-situ. The results indicated that the inversion of the dielectric cylinder model perform better, yielding a coefficient of determination (R^2) of 0.61 and a root mean square error (RMSE) of 3.16 m. The single scattering model produced relatively lower R^2 value of 0.47.

Index Terms— Canopy Scattering Models, Vector Radiative Transfer Modeling, Dielectric Cylinder, Biophysical Parameter

1. INTRODUCTION

Knowledge on biophysical properties of tropical forests retrieved from remote sensing data enables to improve monitoring of these unique areas, very often impenetrable. In particular, the use of Synthetic Aperture Radar (SAR) for monitoring forests has drawn a great attention in the past decades due to its ability to observe earth surface at all weather conditions and sensitivity to the dielectric and geometrical properties of size, shape and orientation of scattering elements. Because of the randomly oriented complex geometries of the various scattering particles, the radar scattering from natural earth surfaces involves complicated electromagnetic wave interactions.Therefore, it is impossible to deal with all kinds of possible earth elements configurations and conditions in a single polarimetric radar scattering model for a vegetation layer over earth surfaces. Hence researchers attention was always focused on the development of approximate scattering models [1][2]. Many microwave scattering models have been developed to better understand the interaction of microwave signals with forests and other vegetated targets, and thereby to assist in forest parameter retrieval from synthetic aperture radar (SAR) measurements [1][3][4][5][6][7].

It is well known that the backscattering coefficient is not only affected by the radar system parameters such as frequency, polarization, and incident angles, but also the surface parameters such as soil roughness and moisture, and presence and structure of vegetation. Hence, accurate modeling of the propagation of microwaves through tree foliage is generally difficult due to the complexity of the tree electromagnetic geometry and its constituent elements, e.g. trunk, branches, and leaves, where dimensions are comparable to the microwave signal wavelength over a wide range of frequencies. Despite its complex nature, the canopy volume has been treated in the literature as a homogeneous mixture of discrete, randomly distributed and oriented dielectric disks and cylinders representing leaves and branches or trunks respectively [1][8].

Tree height is one of the important parameters for estimating Above Ground Biomass (AGB). Chave et al. reported that the addition of tree height can improve the efficiency of allometric models [9]. Lima et al. compared six allometric models and concluded that an allometric model including tree height had had the highest R^2 [10]. The purpose of this paper is to show how the dual-pol ALOS-2 L-band data can be exploited to yield more accurate tree heights of the selected vegetation stands with the use of two canopy scattering models viz., the single-scattering radiative transfer model with Rayleigh particles and the defoliated trunk layer approximated as dielectric cylinder layer of finite length. Both these layers are sitting on a rough surface layer modeled using the state-of-the-art $I^2 EM$ model.

2. METHODOLOGY FOR HEIGHT ESTIMATION USING CANOPY SCATTERING MODELS

Of the available scatter models, we focused on singlescattering radiative transfer model with Rayleigh particles [11], and the model developed with reference to the model proposed by Karam and Fung [12]. These models, respectively referred to as Model I and Model II in this study, are both based on the vector radiative transfer theory (VRT) and were developed for microwave backscattering studies. A brief discussion is given in the following section regarding the geometrical description of the medium, the electromagnetic modelling of the signal–canopy interactions, the input parameters, and the output data. All the modeling and simulations were carried out using custom code in Python3 language whereas ALOS-2 data processing was carried out using ArcGIS software.

2.1. Model I: $I^2 EM + S^2 RT$

In this model, the vegetation is divided into two layers: the canopy layer, mainly includes the stems and leaves, and the ground layer includes the rough ground. Backscattering from the rough ground is modeled with Improved Integral Equation Method ($I^2 EM$ model). To compute the scattering at the diffuse air-canopy boundary, the model represent the canopy in terms of an equivalent, homogeneous dielectric medium. The total single-scattering backscattering coefficient is the sum of the four backscattering contributions. These contributions include: (a) single backscattering by the ground surface, (b) single direct backscattering by the canopy elements, (c) a combination of single bistatic scattering by the ground followed by single bistatic scattering by vegetation elements or the reverse sequence and (d) transmission through the canopy, to specular reflection by the ground surface, followed by backscatter by the vegetation volume, followed by another specular reflection by the ground surface.

$$\sigma_{pq}^{0} = \sigma_{g_{pq}}^{0} + \sigma_{c_{pq}}^{0} + \sigma_{cgt_{pq}}^{0} + \sigma_{gcg_{pq}}^{0}$$

$$= \gamma_{p}\gamma_{q}\sigma_{s_{pq}}^{0}\theta_{i} + 4\pi\cos\theta_{i}\frac{1-\gamma_{p}\gamma_{q}}{K_{e}^{p}+K_{e}^{q}}\frac{3K_{s}}{8\pi}$$

$$+ 4\pi\cos\theta_{i}\gamma_{p}\gamma_{q}\Gamma^{p}\Gamma^{q}\frac{1-\gamma_{p}\gamma_{q}}{K_{e}^{p}+K_{e}^{q}}\frac{3K_{s}}{8\pi}$$

$$+ 4\pi\cos\theta_{i}\frac{H\gamma_{p}\gamma_{q}}{\cos\theta_{i}}\left(\frac{2\Gamma^{p}\Gamma^{q}}{\cos\theta_{i}}\right)$$
(1)

Equation (1) referred is the $S^2 RT$ model with rayleigh scatterers under incoherent addition assumption, where $a = \frac{K_s}{K_e}$ is the single scattering albedo, H is the height of the medium.

2.2. Model II: $I^2 EM$ + Dielectric cylinder layer

In model II, the medium is subdivided into a layer of defoliated vegetation as a collection of randomly oriented dielectric cylinders of finite length and the underlying rough ground. The scattering amplitude and the extinction cross-section of an arbitrarily oriented single cylinder are calculated. The total backscattering coefficient is the sum of the two backscattering contributions including scattering from the randomly oriented cylinder layer and from the underlying surface. The first order solution of the radiative transfer equation is used to obtain the backscattering coefficient, which can be written as:

$$\sigma_{pq}^0(i) = \sigma_{c_{pq}}^0 + \sigma_{g_{pq}}^0 \tag{2}$$

where $\sigma_{c_{pq}}^0$, $\sigma_{g_{pq}}^0$ represents backscattering from the canopy and ground respectively. The backscattering coefficient due to the cylinder layer, $\sigma_{c_{pq}}^0$, can be written as [12]:

$$\sigma_{c_{pq}}^{0} = \left[4\pi \cos \theta_{i} / \langle K_{e}^{p}(i) \rangle + \langle K_{e}^{q}(i) \rangle \right] \\ \cdot \left\{1 - exp\left[-\left(\langle K_{e}^{p}(i) \rangle + \langle K_{e}^{q}(i) \rangle\right) n_{0} dsec\theta_{i}\right]\right\} \\ \cdot \left\langle |f_{pq}(-i,i)|^{2} \right\rangle$$
(3)

where n_0 is the number of cylinders per unit volume and $f_{pq}(-i,i)$ and $K_e^{p/q}(i)$ are the scattering amplitude and extinction coefficient respectively. Similar to model I, the backscattering from the rough ground is modeled with $I^2 EM$ model. The α, β and γ angles are the Tait-Bryan angles. As cylinder orientation angles are non-correlated, the joint probability distribution function can be factored out as,

$$p(\alpha, \beta, \gamma) = p(\alpha)p(\beta)p(\gamma) \tag{4}$$

Due to symmetry of cylinders Euler angles can be used to describe cylinders by letting

$$\gamma = 0$$
 and $p(\gamma) = 1$ (5)

2.3. Ground data and input parameters of the models

The field surveys were conducted in the selected test sites in December, 2019 and March, 2021. The study area is located at the western slopes of southern Western Ghats in Thiruvananthapuram district of Kerala having different vegetation types. The measurements were taken by establishing plots of size 31.6×31.6m. Sampling plots were established in all the major vegetation types of the area viz. moist deciduous, semi-evergreen and evergreen forests and forest plantations namely acacia and eucalyptus. Measured biophysical parameters include, tree height, trunk diameter, soil moisture and species names. ALOS-2 L-band dual-pol SAR data acquired of March, 2019 has been used in the study. Input Parameters to the models include frequency, incident angle and polarization, soil moisture, correlation length, surface roughness, dielectric constant, tree height and trunk radius. Forest biophysical parameters were assumed to have remained unchanged during the survey period. Therefore, tree density, diameter

at breast height, canopy height, soil moisture and vegetation water content were assumed constant. The input height of the vegetation stand in each plot was the median value of the heights in the respective plot.

2.4. Inverse problem for height Estimation

The estimation of trunk heights using a canopy scattering model can be stated as an inverse problem. In this study, Iterative optimization (IO) approach was used to retrieve heights. The iterative optimization is a popular technique for the inversion of ill-posed problems [13]. Let **Y** be the vector of output variables related to the vector of input variables **X** by the model **M** as **Y** = **M**(Θ , **X**) + ϵ , where Θ is the vector of model parameters. The inversion process determines X by minimizing a merit function S(X) for n number of observations by,

$$S(X) = \sum_{i=1}^{n} [Y_i - M(\Theta, X_i)]^2$$
 (6)

In general, this merit function is non-linear and is solved by classical optimization techniques, e.g., Nelder-Mead Simplex method [14]. The method starts with an initial guess of the variables and is iteratively updated while the merit function approaches towards a minimum. The minimization problem is re-written as a constrained non-linear multivariate scalar function. The range of acceptable height was constrained by 3 - 25m. In between these ranges, the values of X_i that minimize the merit function (using a non-linear L-BFGS-B algorithm [15]) are selected as the optimal result. For validation purpose, the modelled tree heights were compared with ground measurements at the study sites. One point from each vegetation type was used for fine tuning the forward model and the remainder of data used as independent validation points. The performance of the inversion was assessed in terms of the coefficient of determination (R^2) and root mean square error (RMSE) between estimated and observed tree heights. A vegetation stand height map was prepared from model II. To reduce the computing time in the optimization process, the ALOS -2 image was resampled to 100m pixel size and the non-vegetation areas are masked out in the process

3. RESULTS AND DISCUSSION

This section discusses the results of forest height retrieved using the models I & II with ALOS-2 data along with the validation of each using field measurements. Linear relationships between vegetation stand heights and polarizations of ALOS-2 data showed a relatively high R^2 value for HV polarization $(R^2 = 0.26)$ in comparison to HH polarization $(R^2 = 0.034)$. The validation of height estimated from model I with ground measured values resulted in a R^2 value of 0.47 with an RMSE of 4.01 m. See Fig. 1 for the regression plot.

Fig. 1. Validation plot of tree height from model I with ground measured data

Whereas the retrieval accuracy has improved further using model II (See Fig. 2). Here, the R^2 value between the observed and the estimated height is 0.61 with a better RMSE value of 3.16 m. This shows that the predicted values from model II are more correlated to the field values. This makes the case for adding a trunk component to the model, instead of a homogeneous layer of spherical particles, to achieve a better accuracy in estimation of forest stand height. Fig. 3 shows the estimated tree height map obtained by model II inversion in the study area..

Fig. 2. Validation plot of tree height from model II with ground measured data

4. CONCLUSIONS

In this work, two polarimetric microwave canopy scattering models were compared for their accuracy in tree height estimation, which is a problem of paramount importance in forestry. The retrieved heights from the two methods were compared to the measured heights from the field. ALOS-2 Lband data at HH and HV polarizations were used in the study.

Fig. 3. Vegetation stand height map of the study area (100m pixel size).

The canopy models chosen were $S^2 RT$ model (model I) and dielectric cylinder model (model II), with a common $I^2 EM$ surface scattering layer. The Ground measurement data was collected from the tropical forests of Kerala in December, 2019 and March, 2021. Inversion methodology adopted was the Iterative Optimization (IO) method. Out of the two models, the highest correlation ($R^2 = 0.61$) and lowest error of estimation (RMSE = 3.16 m) were reported for model II. Results presented here demonstrate that adding the trunk layer into the canopy model improves the accuracy of forest biophysical parameter retrieval. Further, the study shows that the dual polarized SAR modes and in-situ measurements collected systematically can be adeptly employed to retrieve tree biophysical parameters from tropical forests. Adding the height component to the allometric model can improve the model efficiency in estimating AGB. Hence the predicted height values along with Diameter at Breast Height (DBH) in the allometric models can be used for estimating AGB of the study area. This constitutes part of an ongoing work from authors. Since the study involves complex physical modelling, a number of input parameters had to be fixed for running

the model. Further, increasing the number and spread of the ground truth points in the rather inaccessible terrains of tropical Western Ghats was also a constraint. Addressing these issues and exploring options for multi frequency SAR data analysis encompassing future NISAR mission offers ample scope for updation of the study methodology.

5. ACKNOWLEDGEMENT

Authors thankfully acknowledge the funding support provided by Space Application Centre, ISRO, as part of L&S airborne PI Scheme.

6. REFERENCES

- F.T.Ulaby, K.Sarabandi, K.McDonald, M.Whitt, and M.Dobson, "Michigan microwave canopy scattering model," *International Journal of Remote Sensing*, vol. 11, p. 1223–1253, 1990.
- [2] L.Tsang, J.A.Kong, and R.T.Shin, "Theory of

microwave remote sensing (new york: Wileyinterscience)," in *Theory of microwave remote sensing (New York: Wiley-Interscience)*, vol. II. Wiley–Blackwell, 1985.

- [3] R.H.Lang and J.S.Sidhu, "Electromagnetic backscattering from a layerof vegetation: A discrete approach," *IEEE Transactions on Geoscience and Remote Sensing*, vol. 21, p. 177–186, January 1993.
- [4] S.L.Durden, J.J.VanZyl, and H.A.Zebker, "Modeling and observation of the radar polarization signature of forested areas," *IEEE Transactions on Geoscience and Remote Sensing*, vol. 27, p. 290–301, May 1989.
- [5] J.A.Richards, G.Q.Sun, and D.S.Simonett, "L-band radar backscattering modeling of forest stands," *IEEE Transactions on Geoscience and Remote Sensing*, vol. 25, p. 487–498, July 1987.
- [6] Y.C.Lin and K.Sarabandi, "Electromagnetic scattering model for a tree trunk above a tilted ground plane," *IEEE Transactions on Geoscience and Remote Sensing*, vol. 33, p. 1063–1070, July 1995.
- [7] G.Picard, T.L.Toan, S.Quegan, Y.Caraglio, and T.Castel, "Radiative transfer modeling of crosspolarized backscatter from a pine forest using the discrete ordinate and eigenvalue method," *IEEE Transactions on Geoscience and Remote Sensing*, vol. 42, p. 1720–1730, August 2004.
- [8] S.A.Torrico, H.L.Bertoni, and R.H.Lung, "Modelling tree effects on path loss in a residential environment," *IEEE Transactions on Antennas and Propagation*, vol. 46, p. 872–880, June 1998.
- [9] J. Chave, C. Andalo, S. Brown, M. A. Cairns, J. Q. Chambers, D. Eamus, H. Folster, F. Fromard, N. Higuchi, T. Kira, J. Lescure, B. W. Nelson, H. Ogawa, H. Puig, B. Rie 'ra, and T. Yamakura, "Tree allometry and improved estimation of carbon stocksand balance in tropical forests," *Oecologia*, vol. 145, pp. 87– 99, October 2005.
- [10] A. J. N. Lima, R. Suwa, G. H. P. de Mello Ribeiro, T.Kajimoto, J. dos Santos, R. P. da Silva, C. A. S. de Souzaa, P. C. de Barrosa, H. Noguchib, M. Ishizukab, and N. Higuchi, "Allometric models for estimating above- and below-ground biomassin amazonian forests at são gabriel da cachoeira in the upper rio negro, brazil," *Forest Ecology and Management*, vol. 277, pp. 163–172, April 2012.
- [11] F.T.Ulaby, D.G.Long, W.J.Blackwell, C.Elachi, A.K.Fung, C.Ruf, and J.VanZyl, "Microwave radar and radiometric remote sensing," in *Microwave radar and*

radiometric remote sensing, vol. I. The University of Michigan Press, 2014, pp. 461–467.

- [12] M.A.Karam and A.K.Fung, "Electromagnetic scattering from a layer of finite length, randomly oriented, dielectric, circular cylinders over a rough interface with application to vegetation," *International Journal of Remote Sensing*, vol. 9, pp. 1109–1134, October 1988.
- [13] Y.Wang, "Quantitative remote sensing inversion in earth science: Theory and numerical treatment," in *Quantitative Remote Sensing Inversion in Earth Science: Theory and Numerical Treatment*, vol. II. Springer-Verlag Berlin Heidelberg, 2010, p. 785–812.
- [14] S.Jacquemoud, F.Baret, B.Andrieu, F.Danson, and K.Jaggard, "Extraction of vegetation biophysical parameters by inversion of the prospect+ sail models on sugar beet canopy reflectance data,application to tm and aviris sensors," *Remote Sensing of Environment*, vol. 46, p. 163–172, June 1998.
- [15] J.L.Morales, "A numerical study of limited memory bfgs methods," *Applied Mathematics Letters*, vol. 15, pp. 481–487, January 2001.

Copyright ©2021 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For reprint or republication permission, email to IEEE Copyrights Manager at pubs-permissions@ieee.org. All rights reserved. Copyright ©2021 by IEEE.

The papers in this book comprise the proceedings of the meeting mentioned on the cover and title page. They reflect the authors' opinions and, in the interests of timely dissemination, are published as presented and without change. Their inclusion in this publication does not necessarily constitute endorsement by the editors, the IEEE Geoscience and Remote Sensing Society, or the Institute of Electrical and Electronics Engineers, Inc.

IEEE Catalog Number: CFP21U63-ART ISBN: 978-1-6654-4249-7

Assembled by Conference Management Services, Inc.

