CHOICE BASED-CREDIT & SEMESTERSYSTEM (CBCSS) (2014 ADMISSION ONWARDS)

CORE COURSES (THEORY)

Semester -1

Title of Paper: PY1141: BASIC MECHANICS & PROPERTIES OF MATTER

No. of credits: 2 No. of hours per week: 2

Course Outcome

S No.	Course	Course Outcome	Taxonomic
	Outcome		Level
	No.		
1.	CO1	understand of concepts and principles related to	Un, Re
		mechanics and properties of matter and examine	
		the basic principles of mechanics	
2.	CO2	analyse various oscillating systems obeying simple	Un, Re
		harmonic motion	
3.	CO3	understand the conservation of energy and	Re, Un, Ap
		associated theory	
4.	CO4	have a complete idea about the basic laws and	Re, Un, Ap
		theorems of fluid dynamics	

Title of Paper: PY1221 -CLASSICAL MECHANICS

No. of credits: 2 No. of hours per week: 2

Course Outcome

S No.	Course	Course Outcome	Taxonomic
	Outcome		Level
	No.		
1.	CO1	Knowledge and understanding of the classical laws	Un, Re
		of motion.	
2.	CO2	Competency in using the essential mathematical	Un, Re, Ap
		skills needed for describing mechanics and special	
		relativity	
3.	CO3	Problem solving skills- Lagrangian and Hamiltonian	Re, Un, Ap
		mechanics applied to basic systems.	
4.	CO4	have an idea about the influence of classical	Re, Un, Cr
		mechanics and relativity on modern scientific	
		development.	
5.	CO5	Develop an interest in the role of mechanics and	Re, Un, Cr
		relativity in the everyday world.	
6.	C06	Demonstrate an understanding of the basic	Re, Un
		principles of special theory of relativity'	

Title of Paper: PY1341 -THERMODYNAMICS AND STAT ISTICAL PHYSICS

No. of credits: 3 No. of hours per week: 3

Course Outcome

S No.	Course	Course Outcome	Taxonomic
	Outcome		Level
	No.		
1.	CO1	Use thermodynamic terminology correctly and	Un, Re, Ap
		explain fundamental thermodynamic properties	
		and various laws of thermodynamics.	
2.	CO2	develop the problem solving skill to s using the	Un, Re, Cr
		properties and relationships of thermodynamic	
		systems and to analyse basic thermodynamic cycles.	
3.	CO3	develop an idea about various phenomena of heat	Re, Un,Cr
		transference.	
4.	CO4	explain statistical physics as logical consequences of	Un, Re, An
		the postulates of statistical mechanics	
5.	CO5	use the methods of statistical mechanics to develop	Un, Re, An,
		the statistics for Maxwell Boltzmann, Bose-Einstein,	Ap, Cr
		Fermi-Dirac distributions and understand statistics	
		of particles	

Title of Paper: PY 1441 ELECTRODYNAMICS

No. of credits: 3 No. of hours per week: 3

Course Outcome

S No.	Course	Course Outcome	Taxonomic
	Outcome		Level
	No.		
1.	CO1	learn the concepts and properties of electric and	Un, Re
		magnetic fields in vacuum and matter	
2.	CO2	Acquire a thorough knowledge on the vast theory of	Un, Re
		electrostatics and magnetostatics	
3.	CO3	explain classical electrodynamics based on	Re, Un, Ap
		Maxwell's equations	
4.	CO4	concepts and properties of electromagnetic wave	Re, Un, Ap
		propagation and emission	
5.	CO5	Apply Maxwell's equations to a variety of problems	Re, Ap
		and solve problems involving the propagation and	
		scattering of electromagnetic waves in a variety of	
		media, calculation of fields, the motion of charged	
		particles etc	
6.	CO6	Demonstrate an understanding of the	Un, Ap
		characteristics of electromagnetic radiation.	
7.	CO7	To evaluate various circuits including L,C, R and to	Un, An
		analyze their complete response	
8.	C08	Apply various network theorems to determine the	Un, Ap
		circuit response .	

Title of Paper: PY1541: METHODOLOGY IN PHYSICS & RELATIVISTIC MECHANICS

No. of credits: 4 No. of hours per week: 4

Course Outcome

S No.	Course	Course Outcome	Taxonomic
	Outcome		Level
	No.		
1.	CO1	use the methods of statistical mechanics to develop	Un, Re, Cr
		the statistics for Maxwell Boltzmann, Bose-Einstein,	
		Fermi-Dirac distributions and understand statistics	
		of particles	
2.	CO2	understand some basic concepts of research and its	Re, Un, Ap,
		methodologies, identify appropriate research	Cr
		topics, select and define appropriate research	
		problem and parameters, prepare a project	
		proposal, organize and conduct research in a more	
		appropriate manner ,write a research report and	
		thesis	
3.	CO3	Problem solving skills- Lagrangian and Hamiltonian	Re, Un, Ap,
		mechanics applied to basic systems.	Cr
4.	CO4	have an idea about the influence of classical	Re, Un, Ap.
		mechanics and relativity on modern scientific	Cr
		development.	
5.	CO5	An interest in the role of mechanics and relativity in	Re, Un, An,
		the everyday world.	Ev
6.	C06	Demonstrate an understanding of the basic	Re, Un, An,
		principles of special theory of relativity'	Cr

Title of Paper: PY1542- QUANTUM MECHANICS

No. of credits: 4 No. of hours per week: 4

Course Outcome

S No.	Course	Course Outcome	Taxonomic
	Outcome		Level
	No.		
1.	CO1	Gain a knowledge on the emergence of quantum	Un, Re
		mechanics, wave properties of matter, general	
		formalism on wave mechanics	
2.	CO2	understand how a wave function is interpreted in	Un, Re
		terms of probability, and appreciate its physical	
		significance	
3.	CO3	understand how a wave function is interpreted in	Re, Un, Ap
		terms of probability, and appreciate its physical	
		significance	
4.	CO4	derive and apply Schrodinger equation to Hydrogen	Re, Un, Ap
		atom	
5.	CO5	apply principles of quantum mechanics to calculate	Re, Un
		observables on known wave functions	
6.	CO6	gain knowledge about fundamental quantum	Un, Cr
		mechanical processes in nature	

Title of Paper: PY1543-ELECTRONICS

No. of credits: 4 No. of hours per week: 4

Course Outcome

S No.	Course	Course Outcome	Taxonomic
	Outcome		Level
	No.		
1.	CO1	students possess advanced knowledge, skills and	Un, Re, Ap
		competence in the subject of analog electronics.	
2.	CO2	Analyze simple electronic circuits based on diodes	Un, Re, An
		and transistors with special focus on designing	
		amplifiers with discrete components	
3.	CO3	Design and analyze bias circuits for BJTs and	Re, Un, Ap,
		amplifiers for the basic categories (CB, CE and CC)	Cr
4.	CO4	Analyze oscillator circuits, feedback amplifiers,	Re, Un, Ap,
		operation amplifiers etc	Cr

Title of Paper: PY1544-ATOMIC & MOLECULAR PHYSICS

No. of credits: 4 No. of hours per week: 4

Course Outcome

S No.	Course	Course Outcome	Taxonomic
	Outcome		Level
	No.		
1.	CO1	Gain a thorough knowledge of vector atom model	Un, Re
2.	CO2	To explain the change in behaviour of atoms in	Un, Re
		external applied electric and magnetic field.	
3.	CO3	Explain rotational, vibrational, electronic and	Re, Un, Ap
		Raman spectra of molecules.	
4.	CO4	Describe electron spin and nuclear magnetic	Re, Un, Ap
		resonance spectroscopy and their applications.	

Semester – 6

Title of Paper- PY 1641 SOLID STATE PHYSICS

No. of credits: 4 No. of hours per week: 4

Course Outcome

S No.	Course	Course Outcome	Taxonomic
	Outcome		Level
	No.		
1.	CO1	have a basic knowledge of crystal systems and	Un, Re, Cr
		spatial symmetries	
2.	CO2	provide how crystalline materials are studied using	Un, Re, An
		diffraction and know the principles of structure	
		determination by diffraction.	
3.	CO3	understand the concept of reciprocal space and be	Re, Un, An
		able to use it as a tool and to know the significance	
		of Brillouin zones	
4.	CO4	account for interatomic forces and bonds and	Re, Un, Ap,
		understand the conduction in metals	Ap
5.	CO5	Understand the Magnetic, optical and electrical	Re, Un
		properties of materials	
6.	CO5	Obtain an outline of superconductivity and its basic	Re, Un, An
		properties	

Title of Paper- PY 1642 NUCLEAR AND PARTICLE PHYSICS

No. of credits: 4 No. of hours per week: 4

Course Outcome

At the end of the course, the student will be able to:

S No.	Course	Course Outcome	Taxonomic
	Outcome		Level
	No.		
1.	CO1	Gain a thorough understanding of the constituents of a nucleus, its basic properties, stability etc and about the various models used to explain the nucleus	Un, Re, Cr
2.	CO2	explain alpha, beta and gamma decay at a basic particle physics level	Un, Re, Ap
3.	CO3	apply the concepts of fission and fusion to power generation	Re, Un, Ap
4.	CO4	know the theory behind particle detectors	Re, Un, Ap
5.	CO5	gain knowledge about the basics of particle physics and the conservation laws obeyed by them	Re, Un, An

Title of Paper- PY1643- CLASSICAL AND MODERN OPTICS

No. of credits: 4 No. of hours per week: 4

Course Outcome

S No.	Course	Course Outcome	Taxonomic
	Outcome		Level
	No.		
1.	CO1	Analyze the intensity variation of light due to	Un, Re, An
		Polarization, interference, diffraction and	
		dispersion	
2.	CO2	Understand a knowledge about optical fiber, its	Un, Re, Ap
		types and its application in communication	
3.	CO3	Explain the working principle, recording,	Re, Un, Ap
		reconstruction and types in holography	
4.	CO4	Explain working principle of lasers	Re, Un, Ap

Title of Paper- PY1644-DIGITAL ELECTRONICS AND COMPUTER SCIENCE

No. of credits: 4 No. of hours per week: 3

Course Outcome

S No.	Course	Course Outcome	Taxonomic
	Outcome		Level
	No.		
1.	CO1	Gain a deep knowledge on number systems, types,	Un, Re, Cr
		conversion, coded number systems etc	
2.	CO2	Design, construct and analyze basic logic circuits	Un, Re, Cr
		using logic gates	
3.	CO3	Gain a deep knowledge about arithmetic circuits	Re, Un, An
		and sequential circuits	
4.	CO4	Gain an adequate knowledge about the various	Re, Un, Ap,
		functioning of computer components, the process of	An
		problem solving using computer, internal	
		organization of computer, memory hierarchy.	
5.	CO5	By learning C language, the students will be able to	Re, Un, Ap
		enhance their analyzing and problem solving skills	
		and use the same for writing programs in C.	
6.	C06	understand theory and problems based on iterative	Un, Re, Ap,
		methods, interpolation, regression and numerical	Ev, Cr
		integration and differentiation.	

PY1661. ELECTIVE COURSES (54 HOURS-2CREDITS) FOR EACH COURSE

Title of Paper PY1661.1 ELECTRONIC INSTRUMENTATION

No. of credits: 2 No. of hours per week: 3

Course Outcome

S No.	Course	Course Outcome	Taxonomic
	Outcome		Level
	No.		
1.	CO1	Gain idea about the concepts of measurement various electrical parameters with accuracy, precision, resolution.	Un, Re, Cr
2.	CO2	passive or active transducers for measurement of physical phenomenon	Un, Re, An
3.	CO3	use and functioning of signal generator, function generator, wave analysers, CRO and spectrum analyser.	Re, Un, Ap, An

CORE COURSES (PRACTICALS)

PY1441 – Mechanics, Properties of mat ter, Error measurements, Heat and Acoustics (S1, S2,S2, &S4)

No. of credits: 3 No. of hours per week: 2

Course Outcome

At the end of the course, the student will be able to:

S No.	Course Outcome No.	Course Outcome	Taxonomic Level
1.	CO1	Understanding on various experiments in mechanics	Un, An, Ap
2.	CO2	Understanding on various experiments in fluid	Un. An. An
2.		dynamics.	() () () () () () () () () ()

PY1645 – Optics, Electricity and magnetism (S5 & S6) No. of credits:2 No. of hours per week: 2

Course Outcome

At the end of the course, the student will be able to:

S No.	Course	Course Outcome	Taxonomic
	Outcome		Level
	No.		
1.	CO1	Complete understanding on various electricity	Un, An, Ap
		magnetism experiments	
2.	CO2	Hands on training and gaining knowledge on	Un, An, Ap
		optics experiments	

PY1646 – Electronics and Computer science (S5 & S6) No. of credits:2 No. of hours per week: 2

Course Outcome

S No.	Course	Course Outcome	Taxonomic
	Outcome		Level
	No.		
1.	CO1	Complete understanding on various various Electronics experiments	Un, An, Ap
2.	CO2	Hands on training and gaining knowledge on Computer programming (C++)	Un, An, Ap

PY1645 – Project(**S5 & S6**)

No. of credits:4

No. of hours per week: 2

Course Outcome

S No.	Course Outcome No.	Course Outcome	Taxonomic Level
1.	CO1	Understanding on Emerging developments in Physics	Un, An, Ap
2.	CO2	Inculcate research aptitude	Un, Ap